To the main page of the Site E. B. Agoshkova

List of articles

Library website “Dialogue of the XXI century

To the main page website “Dialogue of the XXI century”





This article is in Russian


The Essence of the Notion "System" for Systems Thinking

Agoshkova, Elena В. The Essence of the Notion "System" for Systems Thinking //

XXI World Congress of Philosophy. Istanbul, 2003. Abstracts, p. 5-6.

Section: Theory of Knowledge



The development of systems thinking requires a level of comprehension of the systems concepts other than that required by systems methodology of scientific knowledge. For the systems concepts to enter the categorical structure of thinking it is necessary to correlate them with the philosophical categories; in the first place it is necessary to reveal the philosophical foundations of the notion "system" in the unity of ontological and epistemological aspects. It has been shown that the ontological origins of the notion "system" are in an ontological statement by A.N. Whitehead "production of novelty". That is why the system is that side of a thing's being which determines the production of a new property of the whole through the properties of elements and the interaction among them. Then epistemologically, the system in its initial sense is a universal form of grounding the property of the whole through the properties of elements. In the theory of knowledge the system is a bi-component abstract object with the relation between something being grounded and its ground. A fundamental philosophical principle which determines the place of the notion "system" in epistemology is Leibniz "Principle of sufficient reason" interpreted more deeply by M. Heidegger. The system is an expression of this principle. The systems approach of the 201 century should be regarded as a detailed contemporary formulation of "The principle of sufficient reason", with the refinement of the notion "sufficiency".

These two fundamental philosophical principles determine the principles of systems thinking and their harmonious perception by scientific and every-day thinking.


Human thinking develops for millennia, having knowledge and activities as its foundation. Each new century creates a layer of knowledge that enriches the categorial and conceptual scheme of thinking and the principles of knowledge. The second half of the 20th century went under the sign of "system". Systems paradigm comprises three components: systems methodology of scientific knowledge, systems view of the world and systems thinking. Systems methodology was the one to receive detailed development in the 20th century. But the development of systems thinking requires a level of perceiving systems concepts other than methodology of scientific knowledge did. For the systems concepts to enter into the conceptual structure of thinking, it is necessary to correlate them with philosophical concepts. And the first task to be achieved is reveal philosophical grounds of notion "system".


Epistemological Sense of Notion System


Achievements of systems research in the 20th century led to a broader interpretation of notion "system" and gave birth to a multiplicity of definitions of this notion. Although the initial definition of system by L. von Bertalanffi borne ontological hint, the concept of general systems theory he advocated gave the notion "system" strictly epistemological meaning. When further developed, an analysis of the notion "system" as viewed by the theory of knowledge[l] results in the following.

System acts as a universal form of presenting knowledge. It is a definite construction, a set of properties and relations that we single out from an object under study in order to determine the regular relation of property of a whole with properties of its components.

System is the form of presenting the whole through its components.

A real object is not a system, since a real object possesses an indefinite number of properties. But in a real object system Sp can be distinguished with regard to property P of a whole object. System Sp characterizes the producing property P by the properties and relations between the components of an object. Therefore, it is substantial that system Sp on object A relative to property P of the object is the set of such properties in such relations that produce integral property Ps of the set. It is supposed that integral property Ps is coincident with an object's property P about which the system was built in the course of examination.

Integral property Ps is the main individualising feature of the system. It is habitual for us that even in ordinary understanding the word "system" always requires a predicate (energetic system, information system, etc.). The main substantial feature of a system consists in producing an integral property Ps which is generated by the complete set of elements and relations of the system. That is why the notion "generative system" introduced by J. Klir[2] should obtain a high status.

System as an epistemological notion embodies our attempt to reveal among the properties and relations of an object such a finite set of properties and relations of parts which naturally produces integral property Ps of the set. In so doing, property Ps represents property P of a whole object. This leads to an understanding of system as an abstract object on which a certain-type relation R are performed between property P of the whole and a set of properties of the parts that generate integral property Ps. For characterising this relation we used[3] a concept of "identity due to abstraction" introduced by M. Novoselov[4], which is interpreted as a gnoseological identity. Already Plato spoke about such a conditional identity of unity and plurality that formed this unity. Depending on the type of relation R we can get a system, a quasi-system and non-system.

Since the times of Pythagorean theorems and Euclid's treatise on geometry, the system is a universal form of recording knowledge about the regularity of producing property of the whole by properties of its parts. L. von Bertalanffi's programme was called up to secure the universal character of this form. Systems movement was striving to employ this form not only in problems of classical science but to spread it over macro-properties of such objects as economics, biological organisms, natural and technical objects. Methodology of settling such problems ensured a success of systems movement. In the 20th century it become clear that system as an epistemological construction possesses a universal significance and acts as one of the main abstractions of human mind.

But for developing systems thinking it is not sufficient to limit ourselves to the essence of concept system as viewed by the theory of knowledge. Noticeably, systems methodology permits in principle an arbitrary set of properties of which the system is composed. In so doing criteria "measure of uncertainty", "generative uncertainty", etc. are introduced (G.J. Klir). But for revealing the principles of systems thinking such a broader interpretation of concept "system" does not allow us to penetrate in the very essence of systems thinking. In what then do we see its specifics?

To introduce the concept system in the conceptual structure of thinking a more in-depth understanding of the essence of concept system is required. To do so, we should turn once again to ontological aspect of the notion system, initial for L. von Bertalanffi. Noticeably, in systems movement a trend appeared at the very beginning that regards systems problems as those of philosophy (V.A. Lektorsky, V.N. Sadovsky, 1960; B.A. Akhlibininsky, 1969; E. Lazslo, 1962, 1972). The intensive development of systems methodology and general systems theory gave an excessive turn toward understanding a system as an abstraction. This turn was timely set right by E. Lazslo who considered the problem of systems view of the world. He returned to the concept "interaction" its proper place that had been occupied by the concept "relation".


Ontological Origins of the Concept System


The exceptional interest aroused by the idea of L. von Bertalanffi allows a supposition that he brought to surface a topical problem of modernity. But then one should suppose that it must have been examined during the history of philosophy, and that great intellectuals could not refrain from raising this problem.

From the standpoint of today's understanding it is evident that the problems of the unity and plurality, of producing new properties that were discussed in the history of philosophy have direct connection to the essence of the notion system. Earlier on we have examined in detail ontological grounds of the concept system (see E. Agoshkova, 2000). For this presentation most interesting are the views of Plato on the problem of unity and plurality and the ontological "principle of novelty" by A.N. Whitehead.

Plato was the first to dialectically contend the problem of "one" and "the many". He gives a clear definition of the problem: "Yet that which has parts may have the attribute of unity in all the parts, and in this way being all and a whole, may be one?"[6]

And his answer to this question is positive: one and the many co-exist. Plato stresses that parts of a whole remain what they are. This is not an arbitrary division of a whole into parts but such a division which retains the distinctness of each part. It is this meaning that we should give to the concept "element of a system": an element should have a distinctness of its property revealing itself as a possibility of interaction. This makes the difference between the part and the element, between dividing an object into parts and setting off a system on the object. Obviously, half a cloud does not have such definiteness.

Nevertheless, a possibility to single elements out is not a guarantee for forming a system on an object. We have stressed elsewhere that an important distinctive feature of a system is that the set of elements and interactions should generate an integral property of this set. And it is the property of "the one". Here we penetrate into the depths of ontology in order to reveal a principal possibility of generating new properties due to interactions between elements. This aspect of ontology is developed in depth by A.N. Whitehead. Whitehead's categorial scheme contains an ontological principle of Novelty. He introduces the Category of the Ultimate (Creativity, One, Many) and defines the essence of universum as the production of a novelty: "The Ultimate metaphysical principle is the advance from disjunction to conjunction, creating a novel entity other than the entities given in disjunction... The many become one, and are increased by one."[7]

With this statement Whitehead unveils the essence of the concept system. Concepts of "complex unity", "the togetherness of the many", "conjunctive unity" introduced by him allow recognising in Whitehead's ontology a deep elaboration of contemporary systems paradigm, although the index to his work does not contain the concept of system. Now the question "What is a system?" has the answer: "A system is "the many" producing "one". It becomes evident that the concept system should include the requirement of wholeness, unity (V.N. Sadovsky, 1974, 2002), and why we define a system with regard to property P of a whole object. It is this property of a whole object that characterises "the unity" of Plato and "the one" of Whitehead. This relation between property of a whole (one) and the set of properties of parts (many) that produce the property of the whole is the ontological origin of the concept system. That is why we had to require for a system the presence of an integral property of the set of elements. Identity of a sort between one and the many was pointed out already by Plato. Therefore, as noted above, epistemologically the system shows up as a bi-component abstract object with a relation which we have referred to a class of relations of identity due to abstraction. Let us note that a number of systems researchers define the system as an "equation". Possibly, at a closer examination this relation can be called a relation of conditional equality, relation of determination and so on. Thus, the production of a new property through "conjunction of "many" into "one", the co-existence of property of a whole object (one) and a set of properties of (many) is the ontological origin of the concept system. It is this peculiarity of the universe that E. Laszlo makes an accent in his concept of systems view of the world.


System as a Form of Grounding


Now we are to determine to which sphere of philosophical knowledge the concept system belongs to and what it is that makes this form of knowledge universal. To do this let us examine the class of issues lead scientific methodology to the concept system.

Cognitive practices performed in various fields of science, technology and artefact production are quite diverse by content. Among these explaining, forecasting, projecting are the cardinal issues that assure human survival. It has been shown that the procedures of explaining, forecasting, retro-telling, revealing the laws and regularities, proving, defining, etc, as well as the choice of a project's elements, designing and the like are similar in their essence in logic and gnoseological terms. All these practices can be regarded as variants of one and the same fundamental cognitive procedure, i.e. procedure of grounding. [8]

In the foundation of all these procedures there are two fundamental methods of cognition, i.e. analysis and synthesis, and consequently, presenting the whole though parts. It is these tasks of grounding the whole through parts that the initial epistemological understanding of system is related to.

By its essence grounding presupposes the presence of two components - something being grounded and its grounds. The meaning of grounding is that grounds in total lead with necessity to the something being grounded as a result. Ideally, the system as a form of grounding of a whole through parts is such a presentation of the whole through such parts that with necessity give property of the whole. Now it becomes clear why we have defined the system on an object with respect to property P of a whole object. This property P is the component being grounded. This leads us to the understanding of system as the unity of something being grounded and its grounds and gives the system a bi-component form with relations between the components. This attests to the above affirmation that system is a bi-component abstract object.

Consequently, the system as a form of grounding is the cognitive construction, which is called to express Leibniz "Principle of Sufficient Reason".


The Principle of Sufficient Reason and Its Systems Vision


"The Principle of sufficient reason" formulated by Leibniz, though entered into logic as a law did not in fact live an active life of a law. In the mid-2 0th century M. Heidegger called this principle out from oblivion in his brilliant study. According to M. Heidegger, this principle remains in everyday human perception as something insensibly habitual. The in-depth meaning of the principle escapes from human mmd. M. Heidegger hears this in-depth meaning mme latest formulation by Leibniz principium reddendae rationissufficients: "Nichts ist ohne einen zureicheden Grand der seine Zustellung beansprucht".[9]

Thus, Leibniz ennobled this principle up to the paramount foundation and simultaneously put forward a requirement of obvious presence of the grounds of knowledge in knowledge itself. For him groundless knowledge is not knowledge. This makes it possible to turn back to the concept system and to the recognition of system as a universal form of knowledge.

Since the science of Galileo methodology of science has made as its task the elaboration of expressive tools for delivering into knowledge the grounds of this knowledge. As M. Heidegger said, "Als die ausgezeichnete Weis des begriindenden Vorstellens der Gegenstande versteht sich nun aber die neuzeitliche Wissenschaft" /M. Heidegger, Op. cit, p.56/.

As M. Heidegger writes, "Das principium reddendae rationis verlangt, daft alles Vorstellen der Gegenstande ein sich begrundendes sei..." But it was that presentation which further on would be called "system". It was a form of system. Among all abstractions of human mind the system proved a self-grounding abstract object.

L. von Bertalanfi started searching of a universal form of grounding a complex object. He called this form "general system". His idea was success only due to the fact that science had already revealed such necessary grounds of the complex as interaction and information. Without these notions grounding of the complex was impossible.

The 20th-century systems movement was directed toward revealing the grounds that produced property of a complex object, toward bringing these grounds into knowledge and securing these procedures in systems methodology of scientific knowledge. [10] We should note that this philosophical analysis had as its foundation the achievements of systems research done in the 20th century and follows a comprehensive methodological study by G. Klir (Op. cit, 1985). The requirement of "sufficiency" as a characteristic of system was included into the definition of the notion "system" by P.K. Anokhin, V.N. Sagatovsky and Yu. A. Urmantsev.

Systems approach should be regarded as a detailed formulation of contemporary understanding of the principle of sufficient ground. As systems research strives for clear presentation of all sufficient grounds, expressive means of systems methodology are far richer that expressive means of classic science, in which many relations were understood as granted. But what is meant under the sufficiency of grounds?

Leibniz himself did not touch upon this question. But if the system acts as a realisation of sufficient grounds, than we have the right to pose a question in a different way: sufficient for what? And then it proves that the content of any knowledge is limited. Any knowledge obtained is characterised by a "contents interval of given abstraction" (M.M. Noveselov. Op. cit.). That is why the notion sufficiency undergoes a considerable transformation since the time of Leibniz. Contemporary scientific understanding of "sufficiency of grounds" requires the involvement of measure that in systems methodology has received the name of "measure of uncertainty" (G.J. Klir, Op. cit., 1985), etc. General approach to contemporary understanding of sufficiency is possible on the basis of logic of abstracting in cognitive procedures (M.M. Noveselov. Op. cit.).

But it is noteworthy that by its philosophical richness the concept of "sufficient ground" is akin to the concept of "truth". This is like an ideal that we should long for and its unconditional necessity is in being a lighthouse for thinking.

Thus, for the purposes of developing systems thinking the concept of system should be perceived in the unity of ontological and epistemological aspects (B.V. Akhlibininsky, 2000).




With the aim of further developing systems thinking, scientific understanding of system as an abstraction should be essentially enriched by its philosophical understanding. We have revealed those initial philosophical grounds that lead to the notion system.

Two great principle - "Creating a Novelty" and "Sufficient Reason" - in their contemporary interpretation is the philosophical basis which determines the essence of the concept system and will determine principles of systems thinking in their harmonious perception both by scientific knowledge and everyday thinking. Both add to scientific understanding of system as an abstraction. The principles must be reanimated in a new system meaning for purposes of developing a more perfect way of thinking and for transition to a new level of thinking - systems thinking.

Creative faculties of humans are surprising. But a contradiction becomes more and more acute between what humans can create and their ability to understand what they have created. The creation is ahead of the perception of the created and its consequences. At the same time, humankind is impotent to solve certain problems.

Systems terminology as a 20th-century achievement must be comprehended and interpreted from a philosophical perspective to be part of conceptual scheme of thinking. It should be part of both scientific and everyday thinking. That is one of the most important goals of philosophy - the Enlightenment of humanity.



Agoshkova, Elena: Systems Thinking in the 20th Century. In: Proceedings of the Twentieth World Congress of Philosophy. Boston 2000,

Klir, George J.: Architecture of Systems Problem Solving. New York, 1985

Agoshkova, Elena: Philosophical Foundations of Systems Thinking. In: Christensen, Birgit (ed.): Knowledge Power. Gender. Chronos Verlag. Zurich 2002, pp. 789-796

Novoselov, M.M.: Logic of Abstraction: Methodological Analysis. IFRAN, Moscow 2000

Laszlo, Ervin: The Systems Thinking View of the World. A Holistic Vision for Our Time. Hampton Press, 1996

The Dialogues of Plato. In: Great Books of the Western World. Encyclopaedia Britannica 6 (1996), p. 566

Whitehead, Alfred N.: Process and Reality. New York/London 1978, p.21

Nikitin, E.P. The Nature of Grounding. "Nauka", Moscow 1981

Heidegger, Martin: Der Satz vom Grand. Gunther Neske Pfullingen, 1958, p. 91

Agoshkova, Elena, Akhlibinsky Boris: Evolution of the Notion "System". In: Voprosi filosofii, Moscow 1998, No. 7, p. 170-178.




Top of page                          Russian text