Главная страница сайта

Карта сайта

Библиотека сайта

Другие книги автора

Написать автору книги

seneka39@yandex.ru

Актуальность сложности: Вероятность и моделирование динамических систем

Динамика науки: Методологический дискурс

 

 

 

обложка системовед.jpg

Читать книгу в формате pdf

 

УДК 16

ББК 87.256.623

Л 36

 

Рецензент:

профессор Е.М. Ковшов

Рекомендована к печати Редакционно-издательским советом Центра интеллектуальных ресурсов (Самара). Протокол №12 от 18 ноября 2016 г.

 

Лёвин В.Г.

Л 36           Системоведение: Теория. Методология. Практика. М.: Издательство «Спутник +», 2016. 333 с.

 

 

В книге исследуется теоретический статус и методологические основания науки о системах. Дается характеристика форм и ступеней становления и развития базовых идей системоведения. Анализируется соотношение принципа системности с принципом связи, принципом причинности, принципами организации и развития. Рассматривается категориальный ряд системного подхода на фоне понятий структура, функция, вероятность, информация и других понятий общенаучного характера. Выявляется практическая значимость принципа системности для решения задач социального управления. В итоге обосновывается уникальная модель становления и развития общей науки о системах, разрабатываются принципы ее эффективного применения в разных областях познания и человеческой деятельности.

Ключевые слова: наука, система, наука о системах, системология, принципы системологии, теория систем, моделирование сложных систем, праксеология, методология системных исследований.

Отпечатано с готового оригинал-макета.

 

ISBN 978-5-9973-4116-9 © Лёвин В.Г., 2016

 

 

 

 

Раздел III. МОДЕЛИРОВАНИЕ СИСТЕМ И ОБЩЕНАУЧНЫЕ ТЕОРИИ СИСТЕМОВЕДЕНИЯ

 

3.1. Специфика системного моделирования

В этом параграфе исследуется формирование методологии системного моделирования, прослеживается эволюция его общих принципов на материале истории научного познания. Главная проблема, которая анализируется в данной работе, связана с раскрытием моделирующей функции научного познания в сфере системных исследований. Указанная функция трактуется в самом широком плане как использование приближенных к реальности форм и способов описания и объяснения мира, основанных на учете практических возможностей субъекта науки. При этом берется во внимание, что моделирующее научное познание, развиваясь в рамках системной парадигмы, изменяет представление о собственном предмете исследования. Оно осуществляет переход от изучения монообъектов к исследованию взаимодействий. Отражением такого перехода стало широкое использование в научном моделировании представления о состоянии объекта в различные моменты его существования, а также применение языка событий для описания смены подобных состояний. Указанные моделирующие средства играют, например, значительную роль в современной физике, но они же используются в рамках статистического подхода к объектам науки. Вместе с тем, они служат средством описания алгоритмов изменения кибернетических систем.

Новая предметная область научного познания рассматривается в предлагаемой работе в контексте исторической эволюции принципов системного моделирования. Ее первая фаза породила методы функционального описания сложных объектов, тогда как современный этап связан с формированием принципов, ориентированных на описание организации и динамики сложного поведения. Дальнейший прогресс методов системного моделирования требует усиления внимания к моделирующему описанию объектов, способных к самоорганизации.

Говоря о методологических регулятивах системного моделирования, необходимо иметь в виду следующие онтологические характеристики, в которых проявляется природа системности: качественную дифференцированностъ и целостную интегрированность элементов, функциональную разделённость и необходимое взаимодополнение элементов в рамках определённого типа устойчивого, воспроизводящегося функционирования. Вместе с тем, в науках системного типа осуществляется опора на представления о функциональной целостности и самообусловленности объектов, об интегративном характере законов системного взаимодействия, о внутренней интенсивной организации системных процессов.

Уточняя моделирующую функцию системного подхода в познании, отмечу, что его применение свидетельствует о переходе познания на теоретический уровень исследования. В самом общем плане подобный переход связан с установлением законов поведения той системы, которая выделяется в качестве предмета исследования. Для теоретических наук важно уметь выявить систему, обладающую законосообразным поведением. Этому служат две модели систем.

Первая из них ориентирована на функциональное описание поведения объектов без учёта их внутренней структуры. Переход к закономерному представлению соответствующего поведения достигается в данном случае с помощью системы-модели, в которой минимизировано число свойств, характеризующих смену состояний системы во времени. Набор этих свойств считается достаточным, если сохраняется детерминированность, определённость описания функциональной картины сложного объекта. Описание реальной системы может включать бесконечное число параметров (свойств). Однако без ущерба для избранного уровня исследования от ряда из этих свойств можно отвлечься, существенно сократив число значимых переменных. Классический пример механическая задача исследования колебаний маятника. Здесь значимы лишь два параметра: амплитуда и частота, взаимосвязь которых даёт полное определение колебательных движений маятника.

Показательно, что модели функционального описания систем обеспечивают отражение законов как однозначного, так и вероятностного типов. Применение идеализаций, связанных с отражением однозначных законов, является традиционным для периода классической науки. Например, законы классической термодинамики выявлены на моделях, которые учитывают однозначную детерминацию между переменными, отражающими состояние термодинамической системы. В современной науке развивается более общий подход, основанный на применении модели вероятностной системы. В отношении к ней однозначная модель рассматривается как предельный случай описания закономерной связи между элементами системы.

Другая модификация системного описания базируется на представлении, что изменение состояний сложного объекта сводится к изменению как линии его поведения, так и внутренней организации, структурной упорядоченности элементов. В этом случае используются структурно-функциональные модели, построение которых регулируется требованием об устранении избыточности и неопределённости во взаимосвязи между структурой и функциями системы. Такая взаимосвязь не обязательно должна быть жесткой. Поэтому в познании и на практике удовлетворительными признают модели, которые способны оптимизировать функциональную структуру по главному параметру, характеризующему эффективную линию поведения системы.

К сказанному надо добавить, что понятие «система» и принцип системности, выступая средствами теоретического познания, расширяют возможности сущностного отражения действительности. Они служат регулятивами исследования закономерно определённого состава, структуры, оснований качественной определённости и функциональной целостности объектов. При этом они ориентируют познание на применение методов, предполагающих отказ от элементно-казуальных схем изучения материальных объектов. Напомним, что классическое естествознание во многом опиралось именно на эти схемы. Их применение обеспечивало успешное решение задач по овладению простыми физическими и химическими процессами, сводя их к последовательности действий отдельных звеньев, узлов, связанных однозначной цепью казуальных законов. Напротив, принципиальная постановка проблем современной науки характеризуется стремлением к отражению интегральной картины связи явлений, к объяснению всякого отдельного процесса из совокупного процесса «жизнедеятельности» и развития той или иной системы. Применение данной схемы объяснения основано на учёте многовариантных способов действия элементов системы. Вместе с тем принимаются во внимание возможности описания системы с точки зрения «пользы», «вреда», «нормы» функционирования. С этих позиций оценивается поведение системы как целого не только в технических и общественных, но и в естественных науках.

Так, современная биология опирается на теоретико-методологические программы, которые выделяют ряд взаимодействующих аспектов многогранной сущности живого и уточняют системные признаки биологической организации материи. К общим сторонам этой сущности относятся: многоуровневая природа жизни, принадлежность ее к различным типам функционирования во времени, нелинейный, ветвящийся путь генезиса и эволюции живого. Соответственно, объяснение феномена жизни строится с применением всех названных фундаментальных идей, которые рассматриваются как дополняющие и конкретизирующие друг друга. Принцип системности в объяснении жизненных процессов реализуется также через использование синтетических понятий, на базе которых складываются интегральные методы биологического исследования. Примером может служить применение понятия о структурно-генетическом плане формирования отдельного организма, понятия об адаптациогенезисе как особой форме эволюции живых систем и др.

 

 

Вернуться к содержанию

 

ОГЛАВЛЕНИЕ

Введение

Раздел I. Принципы и общие идеи системоведения

1. 1. Историческое развитие науки о системах

1.2. Принцип системности в научной методологии

1.3. Категориальный статус понятия «система».

1.4. Специфика и сущность системного подхода

1.5. Неодетерминизм и системный подход

1. 6. Причинность и системность

Раздел II. Общенаучные методы в системных исследованиях

2. 1. Вероятность и вероятностный подход

2.2. Природа стохастических процессов

2.3. Парадигмы структурно-функционального подхода

2.4. Принцип организации в системологии

2.5. Телеономность и системность

2. 6. Интеграция, целостность, системность

Раздел III. Моделирование систем и общенаучные теории Системоведения

3. 1. Специфика системного моделирования

3.2. Системное моделирование в механике

3.3. Моделирование систем в термодинамике

3.4. Системное моделирование химических реакций

3.5. Моделирование биомолекулярных систем

3.6. Кибернетика и системное моделирование

3.7. Вопросы моделирования в синергетике

3.8. Путь к общенаучной теории систем

3.8.1. Общая теория систем Л. Берталанфи

3.8.2. Теоретическая концепция У. Росс Эшби

3. 8.3. Параметрическая теория систем

Раздел IV. Праксеология и системология

3. 1. О системизации практики

4.2. Системный подход в принятии социальных решений

4.3. Вопросы оптимизации системы «наука-техника»

4.4. Модернизация системы воспитания личности

Заключение

 

 

 

 

3. 2. Системное моделирование в механике

Предлагаемый ниже материал базируется на использовании ранее опубликованной работы автора [1]. Здесь же автор стремится доказать, что истоки системного моделирования можно обнаружить в методологических исследовательских подходах, на которые опирается одна из фундаментальных наук естествознания механика.

Классические принципы и модели механического исследования были построены на основе трудов Галилея и Ньютона. В них использовалось представление об относительно полном круге обусловленности механических явлений. Эта совокупная обусловленность выражается посредством вычленения тела движения и тела отсчета, с последним связывается трёхмерная сеть ортогональных координат. Наличие механического движения устанавливается относительно координатной сети, которая не может привносить возмущения в механическое движение, поэтому она рассматривается как инерционная.

Тело, в отношении которого изучается механическое движение, может либо перемещаться относительно координат, либо покоиться. Само оно рассматривается как система точек, обладающих механическими свойствами. Описание таких свойств даётся с помощью понятий масса, расстояние, время, сила, энергия, импульс и др. В соотношениях указанных свойств установлены определенные инварианты, которые фиксируются как законы механики.

Методология классической механики неразрывно связана с понятием изолированной системы частиц и применительно к этой системе формулирует три основных закона механики. Одновременно механика предполагает, что в рамках такой системы частицы взаимодействуют друг с другом и это взаимодействие проявляется с некоторой силой, получающей количественное выражение. Для механики характерно рассмотрение силы в качестве причины изменения движения по прямой (например, в качестве причины ускоренного механического движения). Вместе с тем, совокупное действие многих сил, как утверждается в механике, способно породить сложное движение (возвратно-поступательное, винтовое, круговое и т.д.). Причём, подобное совокупное действие не обязательно описывается моделью арифметического или алгебраического сложения сил. Нередко здесь используется модель векторного соединения, выражающая не что иное, как композицию системы действующих сил.

Показательно и другое. В механике система частиц рассматривается в качестве целостности, выделенной из среды. Целостная точка зрения ведёт в данном случае к пониманию системы как образования, на которое не действуют моменты внешних сил. Напротив, механический подход предполагает, что состояние системы полностью определяется законом сохранения внутренних моментов сил и законом сохранения момента импульса. В дополнение к этим законам вводится также положение, согласно которому целостное описание системы связано с учётом её полной энергии. Данное положение обобщается до принципа, утверждающего, что энергию изолированной системы можно преобразовать из одной формы в другую, однако полная энергия в её различных формах не исчезает и не рождается из ничего.

Нетрудно установить, что классический образ предмета механического исследования строится на представлении о сохраняемости системы и устойчивости её фундаментальных параметров и законов. Механика покоится на принципе, что природа одинакова, а механическая материя сохраняет своё бытие во все моменты движения. Утверждается, например, сохраняемость массы, ритма времени, полной энергии.

Ситуация меняется, однако, в релятивистской механике. Здесь принимается во внимание равномерное поступательное движение систем друг относительно друга и устанавливается его соответствие со скоростью движения света в вакууме. Релятивистская механика учитывает, что ряд существенных параметров системы претерпевают изменения в условиях движения, близкого (соизмеримого) со скоростью света. В подобных условиях выявляется зависимость базовых параметров механических систем от пространственно-временной неоднородности материи. Здесь возникают различия между свойствами систем, фиксируемыми в покоящемся и движущемся состояниях. Тем не менее, полное описание системы строится с учетом ряда универсальных законов сохранения (сохранения импульсов, сохранения энергии и др.).

Из постулатов теории относительности зависимость длительности интервалов времени и длин отрезков от выбора инерциалъной системы отсчёта. Здесь релятивистский закон сложения скоростей существенно отличается от классического закона сложения скоростей. В классической физике при переходе от одной инерциальной системы (№ 1) к другой (№ 2) время остается тем же: t2 = tL , а пространственная координата изменяется по уравнению x2 = x1vt. В теории относительности применяются так называемые преобразования Лоренца:

 

В итоге модели описания механических систем существенно модернизируются [2].

Ряд особенностей в моделирование механических систем внесла квантовая механика. Она имеет отношение к описанию поведения микрочастиц или их совокупностей. В этом описании учитывается волновая (колебательная) природа микрообъектов. Вместе с тем, учитываются квантование их свойств и квантовые переходы от одного состояния частиц к другому. Характеристика волновых эффектов в динамике частиц даётся с помощью волнового уравнения Шрёдингера. В состав этого уравнения включается пси-функция, квадрат модуля которой представляет собой плотность вероятности обнаружения частицы в заданной точке. Достоверность обнаружения частицы где-нибудь в пространстве выражается с помощью условия нормирования и записывается формулой, представленной в источнике [3]. Результат определяется интегрированием знаменитой в физике особой пси-функции.

По значениям указанной функции можно вычислить спектр квантовых энергетических состояний, допустимых для частицы. Исходя из волновых представлений, частица рассматривается в квантовой механике как «локализованная» в области суперпозиции бесконечного числа волн, как волновой пакет. Частота и длина волны в центре пакета вычисляются по формулам, в составе которых задействована так называемая постоянная Планка.

Замечательным результатом квантовой механики является возможность двойственного описания её объектов: либо как волны (со своей амплитудой, частотой и длиной волны), либо как частицы (со своей массой, энергией и импульсом). Выбор описания зависит от условий наблюдения и от постановки задач в эксперименте. Существенным для квантово-механического описания системы является вывод о неустранимой неопределённости такого описания. Этот вывод тесно связан со знаменитым принципом неопределённости Гейзенберга, с помощью которого фиксируется невозможность сужения области фиксации микрочастицы точнее некоторого предела. Величина предела устанавливается из соотношения, в котором устанавливается связь энергии импульса, времени и постоянной Планка.

Далее. Квантово-механические системы изменяют свои состояния, и это показано в теории и эксперименте. Изменения в квантовом мире происходят как при внешних воздействиях (бомбардировка атомов, приложение внешнего магнитного поля и т.д.), так и самопроизвольно. Например, потеря атомом энергии и излучение кванта энергии может происходить спонтанно и беспорядочно во времени. Предсказать точно момент энергетического перехода невозможно. Однако можно вычислить вероятность перехода в единицу времени. При этом действуют определённые правила отбора (ограничения на квантовые числа), при наличии которых вероятность перехода стремится к максимуму и даже приближается к единице. Существуют также запрещённые переходы, вероятность которых низкая. Самопроизвольный и случайный характер изменения энергетических состояний квантовых систем требует, таким образом, выработки специфических средств их описания, в состав которых входит понятие вероятности. Это обстоятельство давно подмечено методологами науки. Однако мало внимания обращается на то, что в квантовой механике используется более абстрактное, нежели в классической механике, определение состояния, связанное с вероятностью обнаружения электрона, например, в пространстве допустимых для него состояний.

В общем случае для этого требуется знать значения измеримых параметров Р и q , проецированных на ортогональные оси координат. Но соотношение указанных параметров здесь иное, нежели в классической механике, поскольку есть запрет на их совместное точное измерение согласно принципу неопределённостей Гейзенберга. Тем не менее, в квантовой теории существуют специфические средства для получения замкнутого в информационном отношении описания поведения квантовых систем. Так, широко используется описание, основанное на понятии «комплексная волновая функция», которое выработано в рамках концепции волновой природы материи и с помощью которого даётся полное описание системы.

В итоге надо сказать, что классическое моделирование механических систем основано на идее единства мира, на качественном сохранении его законов. На этом же базируется теория относительности при всех её специфических отличиях от классической теории. В этих вариантах механики описание движения систем не содержит представления о внутреннем импульсе и источнике изменении. Здесь мы имеем дело с системами, которые не определяют собственного начала движения и его окончания. Описательные модели таких систем строятся на предпосылке, что система может начинать движение из любого прошлого состояния и способна пробегать все свои состояния на шкале времени бесконечно, если не возникает внешних препятствий. Однако в квантовой механике уже вводится идея спонтанных изменений, а также используется представление о качественных преобразованиях состояний систем путём квантования.

 

 

Вернуться к содержанию

 

 

 

 

3. 3. Моделирование систем в термодинамике

 

Теоретическая термодинамика опирается на представление о системах, характеризующих процессы переноса тепла от источника тепла к холодильнику с помощью рабочего тела. Такие системы способны выполнять некоторую полезную работу. В общем случае процессы в подобной системе являются обратимыми. Главное условие обратимости сохранение равновесного состояния всех тел, принимающих участие в термодинамическом процессе. Здесь предполагается неизменной связь между параметрами состояния, т.е. квазистатичность, сохранение определённой константы в соотношениях термодинамических параметров. Весьма важную форму этой константы даёт, например, закон Менделеева-Клапейрона: PV = GRT .

Одним из общих результатов теоретической термодинамики является выработка представления о том, что состояние термодинамической системы зависит как от внешних, так и внутренних условий. Это обстоятельство учитывается в понятиях о свободной и скрытой теплоте, а также о внешней работе и внутренней энергии термодинамической системы. С представлением о внутренней энергии в термодинамике тесно связано понятие о самопроизвольном процессе, который осуществляется как переход теплоты от более нагретого тела к менее нагретому. Для противоположного перехода нужна энергетическая компенсация [4].

Надо заметить, что специфика описания термодинамических систем существенно связана с доказательством возможности замещения (эквивалентности) основных процессов, протекающих в системе (превращение тепла в работу и переход тепла от более нагретого тела к менее нагретому, которые представляются как эквивалентные). На это обстоятельство обратил в свое время внимание Р. Клаузиус [5]. Он же обосновал необходимость и всеобщность идеи циклов в описании термодинамических превращений. С помощью этой идеи улавливается одно из базовых проявлений сложных систем циклический характер протекающих в них процессов. Там, где предполагается разрыв замкнутой цепи, всегда обнаруживается компенсирующее направление процесса.

Термодинамика дает полное отражение указанной компенсации для неживых систем. Этой цели служат первое и второе начала термодинамики, задающие матрицу энергоэнтропийного описания внутрисистемных преобразований. Существенно то, что подобный способ моделирующего описания был разработан в недрах классической термодинамики, которая имеет предметом равновесные системы. Это термостатика. Она занята отысканием функциональных определителей для замкнутых систем, таких как внутренняя энергия, энтальпия, энтропия.

Напротив, современная неклассическая термодинамика имеет дело с неравновесными системами. Для этих систем характерна определённая необратимость, эффект которой невозможно свести к нулю. Соответственно, методы неклассической термодинамики основаны на использовании неизвестных для классического подхода понятий, таких как «поток энтропии», «скорость возрастания энтропии» и др. Опора на такие понятия дала возможность вывести термодинамические уравнения движения, выявить принципы симметрии, которые обусловливают протекание термодинамических процессов в системе. Тем самым вводился в научную методологию язык обобщенного типологического описания систем.

К термодинамике примыкает молекулярно-кинетическая теория. В ней моделируется поведение газа, замкнутого в некотором объеме. При этом учитывается корпускулярно-молекулярная структура газа, а молекулы рассматриваются как свободно движущиеся в пространстве. Одновременно вводится представление о том, что полная "живая сила" всех молекул (по терминологии Джоуля) обуславливает теплоту газового тела.

В рамках этой теории впервые в науке введено уровневое понимание системы и была предпринята попытка объяснить макрохарактеристики термодинамической системы с помощью микрохарактеристик. Здесь, исходя из механической трактовки движения молекул, показывается, что существует функциональная зависимость между давлением газа, его плотностью и суммарной кинетической энергией занимающих его объём молекул. Следствием такой зависимости является, в частности, хорошо известный закон Бойля-Мариотта.

Рассматриваемая теория учитывает ряд сложных условий, влияющих на термопараметры системы:

-       способность молекул совершать внутреннее движение;

-       существование средней длины свободного пути молекулы;

-       неравномерность распределения скоростей молекул.

Известно, что на первых этапах своего формирования молекулярно-кинетическая теория базировалась на общих методологических принципах механики. Процессы, протекающие в молекулярных системах, описывались сугубо с механических позиций.

Более того, классики термодинамики пытались трактовать само учение о теплоте в качестве одного из разделов механической теории. Ярким проявлением этой тенденции были работы по обоснованию второго начала термодинамики, основанные на предположении о наличии некоторого механизма молекулярного движения и механике сил, действующих между молекулами. По такому пути двигался, например, Л. Больцман. Однако не кто-нибудь, а именно Л. Больцман, осознал невозможность полной аналогии в механическом и молекулярно-кинетическом описаниях системы. В последнем случае неизбежно привлечение понятий, выходящих за рамки механики. В число таких понятий входило, например, определение средней кинетической энергии в течение значительного промежутка времени. Полное осознание данного обстоятельства послужило основанием для характеристики законов кинетической теории как статистических [6].

Изучение молекулярных систем показало, что из взаимодействий одного какого-либо уровня могут рождаться новые качественные особенности, характерные для больших совокупностей. Так, из хаотического движения молекул возникают закономерности, наблюдаемые в поведении массы газа как целого. При этом мы имеем дело с особым типом формирования состояния системы. Здесь наличие беспорядка на некотором элементном уровне обуславливает равновозможность всех направлений движения молекул в пространстве, а также одинаковую плотность газа в разных частях его замкнутого объёма (показано Р. Клаузиусом). А учёт таких параметров становится отправной точкой для применения новых способов моделирования молекулярной системы. В отношении последней признается, что начальные координаты и скорости молекул неизвестны. Тем не менее, можно установить статистические переходы от микропараметров к макропараметрам системы и на этом основании формулировать достаточно строгие выводы о поведении газа в целом.

В этой области науки было показано, что статистическое описание молекулярных процессов позволяет получать вполне строгие выводы в отношении ряда явлений: выравнивание температуры за счёт усреднения скоростей молекул и их перемешивания, установление теплового равновесия и т.д. Новизна статистического моделирования заключается еще и в том, что в описание молекулярных систем и в анализ их функционирования вводится идея множества путей приобретения системой некоторого предпочтительного состояния. Статистический подход, применяемый в таком анализе, учитывает разнообразие этого множества и выявляет вероятность нахождения системы в некотором конечном состоянии. Для предпочтительного состояния вероятность должна иметь максимальное значение, во всех других случаях вероятность уменьшается. Существенно, что за мерой вероятности состояния системы стоит, как показал еще Л. Больцман, «мера распределяемости» (хаотичности) системы [7].

 

 

Вернуться к содержанию

 

 

 

 

3. 4. Системное моделирование химических реакций

 

Каковы системные характеристики химического взаимодействия, как проявляется системность в условиях химического реагирования? Поиск ответов на эти вопросы связан с разработкой методологии моделирования в рамках современной химической кинетики. Новые принципы системного моделирования опираются здесь на фундаментальный факт, что химические реакции обладают способностью переходить к состоянию равновесия, т. е. самопроизвольно достигать стадии, когда прямые и обратные реакции в массе своей (статистически) компенсируют друг друга. В этом случае суммарное изменение концентрации любого вещества, участвующего в реакции, прекращается. Здесь вступают в дело константы равновесия, проявляется закон сохраняемости, имеющий, впрочем, динамическую форму.

Следует отметить также, что специфика системного моделирования в химической кинетике связана с установлением факта существования термодинамического контроля, своеобразного термоограничителя, канализирующего, направляющего реакции в сторону устойчивого динамического равновесия исходных и конечных продуктов. Но одновременно здесь действует кинетический контроль реакций, который направляет систему не к равновесию, а к накоплению наиболее быстро образующихся веществ.

Несомненно, что в области химического реагирования мы имеем дело с системами нового уровня сложности. Здесь действуют уже механизмы регуляции и саморегуляции. Так, многие химические реакции регулируются каталитическими факторами, которые либо ускоряют, либо замедляют процесс, не нарушая положения равновесия.

В данной области нередко возникают автоматические реакции, когда образующееся новое вещество содействует возникновению подобных себе сложных молекул. При моделирующем описании подобных процессов важную роль играет принцип воспроизведения сложных макромолекул. Более общая его формулировка связана с идеей поддержания суперустойчивости химического процесса, обеспечивающего возникновение подобных молекул.

Переход к методам описания сложных реакций опирается в современной химической кинетике на представления о протекании реакций в открытых системах. Введение подобных представлений позволило установить, что протекание реакций зависит не от отдельных внешних факторов, влияние которых сказывается, конечно, на поведении открытой системы. Но главной детерминантой здесь выступает так называемая потоковая зависимость. Потоки имеют направление, определяемое действием какой-либо весьма обшей причины. В кинетике действие подобной причины обозначается понятием «сродство». На основе сродства втягиваются в реакцию вещества, необходимые для процесса замещения в химических превращениях. Если говорить в более общем плане, то сродство, как уже отмечалось в научной литературе, выявляет спонтанную продуктивную активность химической системы [8].

Наконец разработка проблемы моделирования в кинетике связана с учетом самопроизвольного характера химических реакций, с признанием существенной роли самодетерминированных изменений в химических системах. Благодаря этому, соответствующие системы реализуют автономный режим функционирования. Например, установлено, что из числа возможных химических реакций будет протекать именно та, которая сопровождается максимальным выделением тепла. Детерминирующим принципом химических превращений является также поддержание хода реакций, который ведет к уменьшению свободной энергии системы. На это в свое время указал Вант-Гофф. Внутренняя детерминация действует и в так называемых цепных реакциях, когда некая малая причина способна привести в действие лавинообразный процесс синтеза или распада вещества. Соответствующая внутренняя направленность процесса обнаруживается, например, при полимеризации малых молекул в высокомолекулярное соединение, при взрыве порохового заряда и т.д. Интересно, что в каталитических и цепных процессах возникают явления, которые могут описываться в терминах теории управления, поскольку дело идет об отражении обратных связей, автоколебательных изменений системы, о перераспределении энергии между основной реакцией и регуляторными механизмами. Следует согласиться с утверждением, что на соответствующем языке можно описывать свойства реакций как носителей некоторой информации [9].

 

 

Вернуться к содержанию

 

 

 

 

3. 5. Моделирование биомолекулярных систем

 

Изучение молекулярных основ жизни составляет одно из новых направлений современной биологии. Данное направление ориентировано на исследование особенностей химической эволюции биомолекул и стремится раскрыть механизмы самоорганизации живых систем. Применяемая здесь методология строится на выделении относительно простых свойств живых систем (их атрибутивных характеристик). Далее создается гипотетическая модель добиологической системы, которая сопоставляется с набором атрибутивных свойств жизни. В конечном счёте ставится цель показать, что добиологическая молекулярная система может превратиться в биологическую, что такой ход eе изменений не противоречит известным научным данным, а также известным законам науки, т.е. он является закономерно обусловленным.

Предпосылкой формирования моделей добиологических систем служит представление о том, что биомолекулы активно ищут гармонического, взаимно согласованного функционирования и активно противостоят разложению, в силу чего несут в себе «принцип сохранения». Другой постулат связан с осознанием того, что живые системы обладают природой становящегося целого. Они базируются на некоторых устойчивых отношениях. Но вместе с тем им свойственны инновации становления, в них возникают качественные дифференциации, над исходными структурами надстраиваются новые элементы и подсистемы.

В указанных системах действуют законы преобразования внутренней энергии. Они сами производят свои фундаментальные изменения. Но раз так, то они должны иметь и реально обладают способностью к воспроизводству собственных состояний активности. Эта способность проявляется в их циклическом функционировании. С этих позиций в современной науке изучаются возможности преобразования предбиологических систем в живые системы. В ходе такого изучения главное внимание уделяется выявлению способов самодетерминации, реализация которых обеспечивает переход к высшим формам организации, свойственной объектам жизни. В этой области исследований возникают специфические проблемы, разрешение которых имеет важное значение для методологии системного моделирования. Фундаментальный вклад в их осмысление внесли работы М. Эйгена, взгляды которого по соответствующим вопросам требуют самостоятельного освещения.

М. Эйген начинал с анализа особенностей отношений, формирующихся на молекулярном уровне живой клетки. Он отмечал, что здесь действуют процессы переноса информации, осуществляется кодирование наследуемых признаков, действует механизм биосинтеза. В этих процессах участвуют два класса молекул: нуклеиновые кислоты и белки. М. Эйген подчёркивал, что информационные процессы этого уровня изучены достаточно хорошо. Известны носители информации (нуклеотиды), изучено их элементарное строение, количественные характеристики, структурные соотношения и упорядоченность элементов. Установлено наличие регуляторов биосинтеза (наличие активного центра, механизма узнавания и т.д.). Раскрыт механизм воспроизводимости нуклеиновых кислот. Рассчитана минимальная длина полипептидной цепи хорошо адаптированного белка. В ней 4-5 активно действующих центров. Она охватывает около 100 аминокислотных остатков. Биологи могут дать количественную оценку возможностей расположения аминокислотных остатков в такой цепи.

М. Эйген и сотрудники его школы полагали, что возникновение биомолекул с их сложнейшими связями и множеством структурных вариаций не могло идти путём слепого перебора массы возможностей. Числовые значения такого перебора столь велики, что реально он не мог иметь место ни на Земле, ни в ходе Космической эволюции. Поэтому реальные белковые молекулы следует рассматривать как уникальные. Но такие молекулы ещё и оптимальны (по скорости протекания микрореакций и по согласованности) [10].

Белковые молекулы обладают высочайшей организованностью. Это неоспоримый факт. Но есть еще одно важное обстоятельство: для их изучения требуется понятие самоорганизации. Это обстоятельство настойчиво подчеркивал М. Эйген. Для истолкования сверхсложной организации живого М Эйген использовал представление о семантической (селективной) информации. Он отмечал, что в информационном процессе есть физическая компонента сигналы. Но есть и формальная компонента код (знаковая система). Сочетания, группировки сигналов могут иметь характер кода, если они упорядочены и к ним находится интерпретирующий ключ. Главное же – это наличие функциональной упорядоченности сигналов, которая обеспечивает сохранение живой организации (и её дальнейшее развитие).

Из положений, рассмотренных М. Эйгеном, напрашивается вывод, что для систем, организованных как знаковые структуры, законы информации имеют универсальное значение. Управляющее воздействие информации обнаруживается там, где есть альтернативы и есть возможность выбора альтернатив. Информации требуется тем больше, чем больше надо отсечь альтернатив. Процесс не требует информационной регуляции, если он идёт однозначно, без альтернатив, если все возможности кроме одной равны нулю. Известно, что альтернативы могут распределяться случайно-равномерным образом, тогда для их выбора нет предпочтительных условий. Но могут существовать и другие ситуации, когда возможности выбора альтернатив неодинаковы. Общим таким условием является, как полагал М. Эйген, избыточность ряда или одной возможности [11]. Так, например, некоторые альтернативы могут возникать чаще других, и они будут выделяться по их частоте. Могут также возникать предпочтительные последовательности в выборе альтернатив, когда выбор одной тесно обуславливает выбор некоторых иных (например, в белке есть сложные условия соседства аминокислотных остатков). Но любое ограничение неопределенности выбора альтернатив правомерно характеризовать как прирост информации. Существенно, что этот прирост возникает в рамках самодетерминированого процесса.

Развивая свою концепцию, М. Эйген утверждал, что формирование биомолекулярных систем моделируется образами теории игр. Наиболее подходящими к этому случаю оказываются модели стратегических игр. За основу Эйген брал модели «игры в бисер». В рамках подобной игры есть определенные правила выбора. Есть также фиксированный конечный временной интервал игры. Наконец, имеется результат, обусловленный серией выбора. Во множестве серий этот результат является статистическим параметром, колеблющимся вокруг некоторого среднего значения.

По Эйгену, возможен тип игры, который не связан с совершенно детерминированным результатом вследствие нивелирования флуктуации распределения вероятностей. В «игре» хотя и возможен отбор лишь одного состояния или альтернативы, но какая из них «выживает» заранее сказать нельзя, поскольку может сработать механизм флуктуационных катастроф для ряда альтернатив. Правда срабатывает и защита от катастроф благодаря избыточности некоторых из альтернатив. Об этом Эйген прямо не говорит, но именно так функционирует его модель «игры в бисер».

Надо добавить, что усиление флуктуации становится новой детерминантой, действующей как фактор отбора и влияющей на направленный процесс эволюции состояний системы. Такой процесс, по Эйгену, охватывается понятием гиперцикла, отражающим особый класс самоорганизующихся химических цепей. Существование гиперцикла предполагает наличие высокоэнергетического строительного материала, который может репродуцировать свои составные части, но может ещё не быть индивидуальным живым существом [12].

Новизна моделирующего подхода в концепции М. Эйгена состоит в том, что гиперцикловые системы рассматриваются в ней в ряду факторов универсальной эволюции. Базой к тому служит формирование самодетерминированной организации, законы функционирования которой могут служить объяснением перехода от преджизни к живым молекулярным системам.

 

 

Вернуться к содержанию

 

 

 

 

3. 6. Кибернетика и системное моделирование

 

Проблемы моделирования, поднимаемые и обсуждаемые кибернетикой, разнообразны и многоаспектны. Их обсуждению посвящена серьёзная литература [13] Не претендуя на всесторонний анализ этих проблем, сосредоточу внимание на таких фундаментальных идеях, разработка которых выдвигает кибернетику в ряд отраслей знания, сформировавших современную методологическую тенденцию моделирования сложных систем.

В первую очередь следует назвать разработку идей и представлений об управляющей системе, об информационном характере управляющего процесса. Суть дела заключается в том, что изменение состояний системы обеспечивается не прямым принуждением, а выступает в обрамлении некоторой стратегии поведения системы и предполагает достижение определенной цели ее функционирования. В этом случае и говорят, что вместо принуждения действует управление, которое осуществляется путем саморегулирования и выбора из ряда альтернативных путей изменения.

Управление же неразрывно связано с целевым отношением системы к действиям внешней среды. Описание такого отношения не может быть уложено в причинно-следственный ряд, даже если предположить переход внешней причины во внутреннюю. На самом деле для кибернетической системы характерна своеобразная нейтральность к действию внешних факторов. Использование подобной нейтральности становится фактором приспособления соответствующей системы к внешним условиям, которые осваиваются применительно к логике целевого функционирования системы. Существенно, что здесь имеет место не простое ослабление внешних воздействий, а устанавливается новый принцип бытия системы, изменения которой обусловлены согласованием её входов и выходов с ее внутренним состоянием.

Как моделируется подобное согласование? Оно покоится на принципах обработки информации. Кибернетика рассматривает замкнутые циклы обработки информации в пределах компенсирующих управляющих процессов. Наиболее изучены сегодня те процессы, которые реализуются с помощью ЭВМ. Среди последних выделяются цифровые вычислительные машины, использующие информацию в виде числовых кодов. Сфера их действия универсальна. Они функционируют в автоматическом режиме. Описание процесса обработки информации (арифметического, логического) сообщается машине программой, первоначально записанной на бумаге в виде некоторого текста на языке, называемом алгоритмическим. ЭВМ снабжается особым устройством памятью, в которой фиксируются вводимая информация, программа, а также промежуточные и окончательные результаты обработки информации. Для автоматического согласования всех устройств, связанных с потоком информации, служит блок управления.

Ориентация кибернетики на создание ЭВМ привела к тому, что её основным методом стал метод алгоритмического описания управляющих систем. Соответственно сформировалась и математическая основа кибернетики как разработка управляющих алгоритмов (программ). Специалисты-кибернетики знают, что для реализации некоторого процесса управления, т.е. процесса переработки информации, необходимо построить такой алгоритм, такую же или примерно такую же переработку информации, как и исходный процесс, и оценить качество приближения.

Однако существуют кибернетические системы, способные функционировать не только по стратегии, заложенной в управляющем алгоритме, но и изменять своё поведение в соответствии со свежей накапливаемой информацией. Например, известны кибернетические системы, которые могут ориентироваться на частоту появления событий и их новизну, запоминая с наибольшей вероятностью события, протекающие весьма часто, и вырабатывая своего рода навык поведения в типично повторяющихся условиях среды. Есть системы, способные к непрерывному уточнению и обновлению данных об объекте, записанных на матрице запоминающих устройств. Процесс управления при этом направлен на идентификацию модели объекта с реальным объектом. Кроме того, известны так называемые системы адаптации, реализующие итерационный процесс поиска усреднённых прототипов. Такие системы используют короткий интервал текущей информации, тогда как названные выше обучающие системы используют более длинные выборки. Наконец, выявлены самоорганизующиеся системы, в которых процессы реализуются в рамках сложных сетей взаимодействий элементов, причём, каждый элемент несёт собственный алгоритм действия, находящийся под интегральным воздействием как внешних, так и внутренних регулирующих факторов. В результате процесса самоорганизации сеть постепенно оптимизирует свои показатели в направлении лучшего решения задач управления. С позиций искусственного интеллекта эти вопросы освещаются многими исследователями [14].

Авторитетные специалисты связывали с указанной способностью кибернетических систем понятие «самоприспособление». Оно отражает самонастройку системы по отношению к факторам среды, к её изменениям в пределах некоторого допустимого для данной системы порога изменчивости. У. Р. Эшби, например, использовал для характеристики такого самоприспособления термин «ультраустойчивость». С помощью последнего он подчёркивал отличие названных систем от тех, у которых отсутствует способность к самоприспособлению. При наличии же этой способности системы открыты для взаимодействия со средой через особый канал информации, используемой для коррекции «выхода» системы в случае его отклонения от некоторой нормы. Здесь действует обратная связь, т.е. замкнутый контур регуляции поведения системы.

Соответствующая регуляция, как показано в кибернетических исследованиях, строится на учете результатов, обусловленных поведением системы, и на упреждающем поиске допустимых состояний в изменяющейся среде. Тогда мы имеем дело либо с отрицательной, либо с положительной обратной связью [15].

Понятие «самоприспособление» даёт возможность строить модели самоорганизации. Однако оно предлагает весьма упрощённый образ универсальной самоорганизации и не выражает многих её аспектов, проявляющихся, например, в развитии и функционировании сложных биологических или социальных систем. Тем не менее, подход к изучению самоорганизации, учитывающий процессы самоприспособления, является весьма поучительным. Он связан с фиксацией такого типа детерминации, который обеспечивает преобразование внешних воздействии посредством упорядоченных внутренних отношений системы. При этом полагается, что сама система вносит решающий вклад в конечный результат её изменении.

В сфере кибернетики рассматриваются изменения системы как обусловленные правилами внутренних переходов, как зависимые от потоков внутренней информации и от принятых в системе способов оценки эффективности результатов её функционирования. Надо отметить и то обстоятельство, что законы функционирования кибернетической системы выделяют её из среды, поскольку она контролирует собственные существенные переменные и способна регулировать входные параметры. Как раз в последнем случае реализуется система воздействий по замкнутому кругу. Здесь, как отмечалось выше, изменение переменных системы за пределы конкретных ограничений необходимо вызывает управляющее воздействие, компенсируя любые возмущения, способные перевести систему в неуправляемое состояние. В частности, компенсируются и такие возмущения, причина возникновения которых может быть неизвестна. Поэтому механизм обратной связи помогает системе эффективно функционировать в сложных переплетениях причинных факторов, а также в неопределённых условиях.

Иногда в действии данного механизма хотят видеть проявление самопричинения. С этим нельзя согласиться, ибо самопричинение предполагает воздействие следствия на собственную причину. Оно имеет место при тождестве следствия и причины в их глубинном основании. Между тем в кибернетических системах следствие, по существу, отделяется от своей причины, если рассматривать цепь обратной связи. Здесь следствие как выходное воздействие влияет на свою причину через определённый временной интервал – уже как другая, внешняя причина, приведенная в постоянное сцепление с входным воздействием.

Добавлю, что новизна сложных кибернетических систем связана не столько с сохранением её фиксированных состояний, сколько с обеспечением перехода в новые состояния, отвечающие изменившимся условиям среды. Жесткого алгоритма такого перехода обычно не существует. Но новые состояния можно предсказать статистически, анализируя временные ряды (т.е. дискретную или непрерывную последовательность событии, распределённых во времени). При этом учитывается, что статистический разброс временных рядов ограничивается механизмом оптимального выбора поведения, а также механизмом минимизации ошибки управления [16].

Кроме того, следует иметь в виду, что детерминационные отношения в управляющих системах складываются иначе, чем в физических. Доминирующей детерминантой физических систем является действие закона сохранения энергии. В кибернетике же установлено, что сохраняемость количества энергии входного воздействия и количества энергии выходного воздействия может нарушаться. В частности, могут возникать ситуации, когда малые по энергии входы способны вызывать масштабные по энергетическим характеристикам выходы. Очевидно, что такого рода ситуация моделируется на основе представления о системе, функционирующей в направлении сохранения заданной определённости достижения интегральной цели поведения системы. Соответствующее функционирование реализуется в замкнутом цикле, обеспечивающем сохранение общего количества циркулируемой информации.

Разумеется, из-за шума в кибернетических системах часть информации неизбежно нивелируется в неопределённость. Тем не менее, в них на уровне управления возникает дополнительная информация, которая компенсирует потери. Отмечая действие закона сохранения информации, следует учитывать и возможности усовершенствования механизмов управления системой за счет увеличения объема циркулирующей информации. Но новый объем информации опять-таки идёт на компенсацию неопределённости, связанной, например, с организацией процессов самоприспособления систем к новым условиям функционирования. И поэтому в общем случае правомерно говорить о проявлении классических законов сохранения в функционировании кибернетических систем, а вместе с тем об изменении формы действия указанных законов.

 

 

Вернуться к содержанию

 

 

 

 

3. 7. Вопросы моделирования в синергетике

 

Синергетика междисциплинарное направление исследований. В центре его стоит проблема самоорганизации. На эту проблему указывается в обширной литературе, посвященной анализу предмета и методов синергетики. Кроме того, современные исследователи отмечают связь синергетического подхода с изучением процессов самоорганизации в условиях, отличных от гомеостатических [17]. Подобное отличие позволяет специфицировать предметную область синергетики от кибернетики, ибо последняя занимается самоорганизацией, связанной с перестройкой поведения системы без нарушения основной цели её функционирования.

Говоря о своеобразии моделей описания самоорганизации в синергетике, следует учитывать, что она обращена к изучению самоактивности систем. Синергетика опирается на представление, что существует класс систем, обнаруживающих способность к самопроизвольной организации, к упорядочению отношений между элементами, когда на такие отношения накладывается термодинамический закон дезорганизации. Используя этот подход, синергетика стремится объяснить механизм преодоления порога, отделяющего неживые объекты от высокоорганизованных живых образований.

Как достигается подобное объяснение? Основной путь здесь связан с применением уровневой модели системы. Причем такая модель предполагает неполную сводимость свойств макроуровня к свойствам микроуровня. Анализ накопленного в синергетике материала показывает, что в данной области познания можно описывать макроповедение системы с помощью особой группы обобщенных параметров. Одновременно сохраняется возможность описания микроповедения ее элементов с помощью большого числа дифференциальных уравнений. Такая особенность синергетической модели роднит ее с моделями, используемыми в термодинамике и статистической физике. Однако синергетика, в отличие от термодинамики и статистической физики, не предполагает молекулярно-хаотического распределения элементов системы. Напротив, в ней важную роль играет понятие «коллективного состояния», с помощью которого фиксируется способность элементов системы к коллективному выживанию и к поддержанию устойчивой организации системы под воздействием неопределённостных факторов внешней среды [18].

Известно, что в системах, находящихся в состоянии молекулярного хаоса, не может самопроизвольно рождаться и сохраняться устойчивая организация. Эти системы эволюционируют в направлении термодинамического равновесия, при котором неопределённость состояния их микроэлементов достигает максимума. Одновременно в них минимизируется уровень свободной энергии.

Что касается синергетического подхода, то он выявляет новую ситуацию, в которой условием возникновения коллективных (кооперативных) состояний элементов становится сильная неустойчивость системы. При сильной неустойчивости даже малое случайное отклонение на микроуровне может резко усиливаться и давать макроэффект, новое макросвойсгво системы.

Иногда предполагают, что в неживых системах синергетическое обьединение элементов, способствуя возникновению устойчивой структуры, не сказывается на природе самих элементов Думается, однако, что синергетические процессы идут по другому. Теперь уже известно, что для их реализации требуется достаточно высокий уровень энергетической подпитки системы, а также необходимо возбуждение активности её элементов сверх той меры активности, которую они проявляют в стационарном термодинамическом состоянии. Лишь при таком условии потенциально любой из элементов может отклониться от среднего уровня флуктуации. Но именно при этом условии высока вероятность возникновения новых функциональных элементов в системе, для которых нормой становится сверхсильная флуктуация, если её сравнивать с прежними порогами случайных отклонений в поведении элементов. Подобные новые функциональные узлы способны возникать благодаря распространению поля активности отдельных старых элементов, а также благодаря группировке, суммированию и умножению их действия. Эту новую роль могут играть и вносимые в систему обновленные вещественные компоненты, обладающие резонирующими, каталитическими свойствами. В проведенных уже исследованиях показано, например, что на предбиологическом уровне организации систем проявляются своеобразные автопоэтические механизмы их обновления [19].

Выделяя случай вхождения в систему новых элементов и вовлечение в нее с помощью последних новых процессов, надо иметь в виду, что абстрактно возможны два типа реакции старой системы: 1) отторжение новых элементов; 2) выживание и размножение новых элементов, а вместе с тем – возникновение нового режима функционирования системы. Можно уверенно предположить, например, что второй тип сопутствовал предбиологической эволюции. Современные исследования показывают, как могли возникнуть системы, устойчивые к появлению «мутантных» полимеров и одновременно приспособленные к росту своей организации. Ранее уже рассматривалась концепция М. Эйгена, которая дает объяснение таким возможностям. Конкретный механизм возникновения соответствующих систем должен включать, по М. Эйгену, автокаталитический синтез новых молекул из молекул исходного множества [20].

Синергетика, однако, вводит представление о дополнительных аспектах самопроизвольной организации, рассматривая условия отбора новых структур. Принятый в её рамках подход учитывает, что отбор не задаётся каким-либо априорным правилом, равно как не регулируется и не направляется к какой-либо заранее установленной цели. Напротив, результат отбора трактуется в ней как следствие особого флуктуационного поведения системы, когда флуктуации столь сильны, что выводят систему из прежнего равновесия со средой. При этом происходит вымирание вероятностей, с которыми поддерживался средний уровень равновесных флуктуаций, в силу чего обеспечивается прирост информации и под воздействием этого фактора идет рост самоорганизации системы.

Интересно, что модель синергетической системы фиксирует процесс самопроизвольной организации как зависимый от определённого типа взаимодействий системы со средой. Это взаимодействие необычное. В науке чаще всего обращается внимание на его открытый характер, на установление обмена между системой и средой потоками вещества, энергии и информации. Однако, главное здесь состоит в том, что система за счёт резких флуктуации, дающих макроскопический эффект, приобретает, по выражению И. Пригожина, диссипативную структуру [21].

Сегодня существуют значительные трудности в определении смысла данного понятия. Ясно, по крайней мере, что оно позволяет уловить новые аспекты системной картины мира, не раскрываемые другими понятиями системного ряда. В исследованных синергетикой ситуациях диссипативная структура представляется как форма динамической организации, которая выходит за рамки динамики хаоса и обнаруживает законы неклассической термодинамической эволюции. Наличие этой структуры свидетельствует, что система может длительное время пребывать в состоянии, далёком от теплового равновесия. Диссипация означает рассеивание беспорядка системы в окружающую среду, но вместе с тем растет внутренняя упорядоченность некой глобальной ситуации, обладающей неравновесностью [22].

Упорядоченность проявляется в данной ситуации через наложение ограничений на уровень флуктуации. Но, кроме того, для системы, находящейся в неравновесном состоянии, как бы предзадан выбор одной из нескольких ветвей последующей эволюции, т.е. один из многих аттракторов. Ограничения накладываются факторами мирового целого, в том числе малозаметными привходящими действиями, например, малыми изменениями гравитационных сил, потенциалов электрических полей и т.п. Влияние последних становится параметром порядка, а по терминологии Г. Хакена -информатором [23].

Г. Хакен справедливо говорил о возникновении в условиях диссипации целостного информационного пространства или сигнальной среды. Он показал, что извлечение соответствующего сигнала может побудить исходную систему пробежать все допустимые ветвления. Но содержащаяся в сигнале информация может оказаться также недостаточной или избыточной. В последнем случае к одному и тому же аттрактору ведут несколько сигналов. Понятно также, что из возникшей универсальной информационной среды черпают свою часть информации микроэлементы системы, обладающие коллективным действием, сравнимым с макропараметрами системы.

Существенно также, что рождение упорядочивающей информации идет в уровневом масштабе, поэтому способы построения синергетических моделей не опровергают положения термодинамики о невозможности возникновения самоорганизации внутри теплового хаоса. Но синергетика обращает внимание на способы надстраивания регулирующей информации над уровнем теплового равновесия. В силу этого надстраивания физические, неживые системы перестают быть «слепыми», нейтральными к влиянию суперсистемных факторов; напротив, они приобретают способность «учитывать» указанные факторы в своем функционировании. Уровневый подход, тем самым, включается в описание объективных сложных систем, уточняет характер их спонтанной «адаптивной организации» и подстройки к окружаюшей среде.

Из сказанного выше можно заключить, что в классической науке модели функциональной устойчивости отражают обратимые изменения объектов. В современной науке такие модели фиксируют законы активного поведения систем, отражают механизмы интенсификации внутренних процессов, учитывают способы порождения новой информации и действие факторов самоорганизации систем.

Что касается междисциплинарных исследований, то в них методы моделирования опираются на язык типологического выражения системных законов. С его помощью решается задача роста информационной ёмкости описания целостных многокачественных объектов. Концептуальную основу такого языка образуют понятия «взаимодействие», «событие», «поведение», «организация», которые формируют смысловое поле моделирования сложных системных отношений и выводят на обобщённую трактовку закономерности, приспособленной к отражению динамики самоактивных, саморегулирующихся и самоорганизующихся систем.

 

 

Вернуться к содержанию

 

 

 

 

3. 8. Путь к общенаучной теории систем

 

Особое направление системных исследований характеризуется установкой на разработку теоретического аппарата системного знания. Формирование теоретических системных представлений тесно связано с появлением нового класса дисциплин, таких как кибернетика, теория игр, теория решений, исследование операций и т. д. В центр данного направления ставится обобщенное понятие «система», которое в рамках теории получает то или иное модельное изображение. Широкую известность, например, приобрели модели «черного ящика» и «открытой системы», которые служат теперь исходными ступенями для выработки более общих моделей в различных вариантах общей теории систем (ОТС).

Сегодня продолжаются дискуссии по поводу статуса ОТС, ее познавательной ценности, вокруг средств и методов ее построения. В литературе отмечаются сложности определения предметной области ОТС. Применяются различные подходы к формированию конструктивных элементов ОТС.

В свое время Л. Берталанфи вел речь об ОТС в качестве теории в широком смысле слова. В нее он включал совокупность общих идей, принципов и понятий, а также инвариантные формы, абстрактные модели, позволяющие использовать методы формального и математического исследования.

Другие варианты построения ОТС использовали специальные требования методологии науки в отношении формирования теорий. В этом случае ее основными компонентами называли: определение идеализированного объекта, правила логического вывода и доказательства, а также совокупность выводимых утверждений о системных объектах (А. И. Уемов).

Ряд вариантов ОТС опирались на фиксированную эмпирическую базу. При этом общая теория систем рассматривалась как абстрактное отражение свойств эмпирически наблюдаемых и изучаемых систем. Предлагался также путь построения ОТС, который связан с движением от представления о том, что допустимо считать системой. Конструктивная и методологическая функция такого варианта ОТС выдвигалась на первый план (У. Росс Эшби).

Дискуссии вокруг проблемы формирования общей теории систем не завершены. Многие вопросы остаются открытыми. Например, вопрос о соотношении ОТС с теорией диалектики, с кибернетикой, синергетикой, математикой. Продолжается обсуждение методологических принципов, на которые опираются создатели тех или иных вариантов ОТС.

На фоне трудностей, с которыми сталкивается развитие ОТС, хотелось бы подчеркнуть, что следует соблюдать определенную осторожность в оценке ее перспектив, не преувеличивая ее претензий, но и не умаляя ее связи с общим прогрессом научного познания. А такая связь, безусловно, имеется.

Я исхожу из того, что ОТС формируется в рамках широкой тенденции междисциплинарных исследований, ориентированных не на субстратно-субстанциональный аспект действительности, а на отношения между вещами и явлениями. По мысли авторов большинства общесистемных концепций, ОТС призвана теоретически оформить данную тенденцию, с тем чтобы обобщить имеющиеся опыты приложения системных идей и дать в руки исследователей надежный метод познания.

Руководствуясь междисциплинарной трактовкой статуса общей теории систем, ее задачи формулируют на уровне общенаучных требований. Среди этих требований выделяют разработку принципов и методов унификации теоретического описания объектов. В данной связи указывают на возможность применения ее базовых понятий, абстрактных логико-математических моделей описания систем к решению задач интеграции научного знания. Кроме того, многие авторы считают, что общая теория систем содействует научному объяснению и становлению теоретического знания в тех областях науки, где прежде их не было. Подчеркивается также, что средства ОТС ведут к более высокой степени обобщения знаний, чем это позволяют сделать специальные науки.

Замечу, что многие попытки построения общей теории систем тяготеют к истолкованию ее в качестве одной из форм фундаментального знания. В то же время ставится задача разработки в рамках ОТС специализированных средств, приспособленных для получения выводов о конкретных системах.

Полагаю, что стремление к синтезу указанных установок в рамках единой теории систем содержит определенное противоречие, которое свидетельствует о недостаточной развитости теоретического системного знания. Думается, что такие задачи одновременно может и должна решать не отдельная, хотя и общего порядка, теория, но целое научное направление, в состав которого могут входить теории разного уровня. Применительно к системным исследованиям это означает, что теоретико-системные разработки абстрактно всеобщего уровня должны дополняться теориями «среднего уровня», а также прикладными вариантами теории систем, наподобие того, как теоретическая механика дополняется технической, строительной механикой и т. д.

Специфика теоретико-системных разработок связана с исследованием концептуальных средств, предназначенных для определения системы как основного предмета научного познания. Вместе с тем здесь учитывается сводимость широкого круга явлений к тому или иному классу моделей систем, вырабатывается общая точка зрения на существенные свойства системности, изучаются средства упрощения реальных связей и взаимодействий, обеспечивающие переход к системному описанию объектов.

Ранее было установлено, что существуют разные способы определения предметной области ОТС. Среди них есть такие, которые охватывают объекты и типы систем. Другие варианты связаны с трактовкой теории систем в логико-методологическом плане.

Исследуются возможности ориентации ОТС на изучение законов-аналогов, с помощью которых можно выделить новую область качественного определения явлений. При этом опираются на представление об объектах научного познания как специфических носителях униформных отношений и способов функционирования. В основу описания систем кладутся, например, модели структурного и организационного типов. С их помощью изучаются упорядоченные взаимодействия гомогенных и гетерогенных элементов систем, организация свойств, функций и т. д.

Переход к общим понятиям в сфере ОТС иногда связан с фиксацией весьма ограниченного круга свойств, определяемых в качестве признаков системности. Берталанфи, например, характеризует систему как комплекс взаимодействующих элементов. Некоторые авторы считают возможным использовать универсальные абстрактные определения системы, разрабатываемые на уровне моделей чистой математики. Так, М. Месарович полагал, что общая теория систем по необходимости должна изучать общие абстрактные системы. «...Нам достаточно будет понимать абстрактную систему как некоторую абстрактную аналогию или модель определенного класса реально существующих систем. Тогда общую теорию систем можно рассматривать как теорию абстрактных моделей» [24].

Неоднократно высказывалась мысль, что применение традиционных абстракций для построения ОТС ведет к серьезным логическим и гносеологическим трудностям. В частности, надо признать невозможность конструирования универсального абстрактного языка описания свойств, существенных для любых системных объектов. Тем не менее, в специальных моделях, разрабатываемых теориями среднего уровня, достигается допустимая мера сводимости разнородных явлений и процессов к общим аналогам — информационным, гомеостатическим, эквифинальным и т. д. Их применение дает реальный рост емкости каналов междисциплинарного общения внутри научного знания.

Еще один путь решения междисциплинарных задач – это метатеоретическое построение общей теории систем. Он во многом противоположен построению ОТС как научно-технической теории обычного типа. В рамках метатеоретического подхода анализируются структура, средства выражения и методы специализированных системных теорий. При этом учитываются два уровня) анализа: синтаксический и семантический.

В. Н. Садовский относил к сугубо метатеоретическим такие задачи ОТС: разработку средств представления исследуемых объектов как систем; построение обобщенных моделей систем (например, их динамики, роста, поведения); исследование концептуальной структуры системных теорий [25].

Достоинство такого подхода в том, что он ведет к формированию весьма общих моделей системности. Вместе с тем здесь учитывается, что их применение должно приводить к нетривиальной постановке проблем, к построению нового предмета исследования.

Метатеоретическая концепция теории систем дает некоторую надстройку к известному массиву специализированных системных теорий. Ее средства позволяют расширить и уточнить логический базис теоретико-системных исследований. Но они не дают ответа на вопрос о месте теоретических системных концепций в формировании современной общенаучной картины мира. Тогда как без этого ответа нельзя правильно оценить воздействие системных теоретических понятий на развитие предметных областей научного знания. А такое воздействие, безусловно, имеется. В качестве примера можно указать на концепцию «системы видов», на идею биоценоза и др., которые акцентируют внимание биологов на многоуровневом характере организации объектов жизни, на определенной упорядоченности их элементов, на сложном типе взаимодействий этих элементов.

Содержательные средства системного знания все чаще становятся регулятивами построения специальных научных теорий. Эту роль выполняют представления о структурах, организации, сложности, функциях и т. д., которые составляют базовый концептуальный аппарат различных вариантов общей теории систем.

На мой взгляд, общее значение подобных теорий не замыкается в области формально-логического анализа, но предполагает соотнесение с реальными потребностями научного знания в целом. Что здесь имеется в виду? Важно зафиксировать тот факт, что широкий круг научных дисциплин вплотную подошел к изучению объектов принципиально нового уровня сложности, в отношении которых традиционные теоретические средства оказываются недостаточными. Выявление этого факта свидетельствует о новом состоянии науки. И в этом аспекте следует оценивать многие формы внутринаучной рефлексии, в том числе попытки построения общей теории систем. Отмеченные выше два способа построения подобных теорий не противоречат друг другу, но составляют во взаимодействии единый базис системной ориентации современной науки.

Для экспликации высказанного тезиса полезно рассмотреть содержательный потенциал теоретико-системных обобщений. В качестве конкретных образцов анализа я остановлюсь на трех вариантах ОТС, получивших широкую известность в современной науке:

1.     теория систем Л. Берталанфи, которая исследует изоморфизм законов систем;

2.     концепция кибернетики У. Росс Эшби, связанную с теорией индуктивного обобщения;

3.     ОТС в трактовке А. И. Уемова, которая опирается на метод общесистемных параметрических размерностей.

 

 

Вернуться к содержанию

 

 

 

 

3. 8. 1. Общая теория систем: концепция Л. Берталанфи

Для концепции Л. Берталанфи характерны два момента: взгляд на систему как определенную целостность; и стремление к обобщениям высокого уровня, позволяющим синтезировать теоретические модели специальных наук.

Л. Берталанфи отдавал отчет в том, что в науке работают теоретические модели систем лишь уровня некоторой особенности (например, модель эквифинальных систем). Однако он высказывал уверенность, что возможна разработка синтетической модели систем, которая оказалась бы способной выполнить функцию теоретического языка всей современной науки.

В своих поздних работах Л. Берталанфи принимал смягченную версию системного универсализма, отмечая способность ОТС к охвату ряда новых проблем и их решению, причем таких, которые отвергались ранее как «метафизические». Одновременно он оценивал ОТС лишь как одну из теорий, реализующих новую парадигму, концептуальную схему, совершающую сдвиг в исследуемых проблемах и правилах научной деятельности.

В своих статьях 60-х годов Берталанфи вел речь об ОТС в двух смыслах. В широком смысле ОТС выступает как некая совокупность идей и проблем исследования и конструирования систем. В ее теоретическую часть Берталанфи включал кибернетику, теорию информации, теорию игр, теорию решений, топологию, факториальный анализ.

В этот перечень системных научных дисциплин Берталанфи включал также общую теорию систем в узком смысле слова. Ее центральное звено, по мнению Берталанфи, составляет универсальное определение системы, выработанное с учетом характеристик эмпирически обнаруживаемых систем. Общая теория разрабатывает средства для перехода от универсального определения системы к системам, так сказать, низших разрядов, с которыми имеет дело эмпирическое исследование. Берталанфи вел речь не о прямом переносе общего знания о «системе» на фактически наблюдаемые натуральные объекты. Он принимал во внимание промежуточные звенья, так сказать, средний разряд классификации систем — целую группу научных дисциплин, изучающих системы. Одновременно он отмечал, что общесистемное знание способно оказывать воздействие на уровень эмпирического описания систем только в виде изоморфных структур, гомологий и аналогий [26].

Это означает, что собственная функция универсального понятия системы состоит в том, чтобы служить методологическим ориентиром в разработке формально-математических средств описания систем. Эффективность данной функции определяется возможностями выбора достаточно мощных абстрактных моделей, которые должны найти применение в специализированных системных теориях.

Стремясь к созданию эффективной теории, Берталанфи разрабатывал ОТС в качестве логико-математической области исследований, задачей которой является формулирование и выведение принципов, применимых к «системам» вообще. Он использовал для построения ОТС классическую математику, считая, что на этой основе можно установить всеобщие формальные свойства систем, разработать средства для их исследования и описания. Широкая общность и приложимость классической математики дает, по его мнению, гарантии отнесения некоторых формальных системных свойств к любым объектам, которые представляют собой системы. В качестве примера он называл обобщенные принципы кинетики, применимые, в частности, к популяциям молекул и к объединениям биологических существ, т. е. к химическим и экологическим системам. Вместе с тем, указывал на уравнения диффузии, используемые в физической химии и в социальной психологии для анализа процессов распространения слухов и т. д.

Двигаясь по пути выявления формальных системных свойств, относящихся к любой сущности, которая является системой (здесь используется общая модель системы, которую можно выразить понятием «организованное целое»), Берталанфи формулировал ряд общесистемных законов. Например:

1.     Закон оптимальных размеров системы (ограничение размеров ростом коммуникативных сетей);

2.     Закон неустойчивости (отсутствие устойчивого равновесия из-за циклических флуктуаций, обусловленных взаимодействием систем);

3.     Закон олигополии (имеется возможность сосуществования многих соперничающих малых систем, но при наличии лишь двух огромных конфликтующих систем происходит страшный взрыв и, возможно, самоуничтожение обеих).

Установление такого рода законов Берталанфи оправдывал ценностью и плодотворностью идеи изоморфизма, играющей существенную роль в современной науке. Основное назначение этой идеи он видел в необходимости расширить наши концептуальные схемы, чтобы установить совокупность точных законов в тех сферах, где применение физико-химических законов, долгое время считавшихся эталоном «законов природы», оказывается невозможным [27]. Согласно Берталанфи, целый ряд наук имеет дело с «системами», и поэтому обнаруживается формальное соответствие или изоморфизм их общих принципов или даже их особых законов, если условия отвечают рассматриваемым явлениям.

Оценивая позицию Л. Берталанфи, надо подчеркнуть, что изоморфное описание позволяет усиливать исследование, наводить на новые и подчас неожиданные стороны того или иного фрагмента реальности. Однако оно не может считаться собственно объяснением, поскольку для этого требуется указание на действительные условия и факторы, а также на специфические законы явлений. Добавлю также, что применение принципа изоморфизма законов создает условия для обобщенного описания разнокачественных явлений. Тем не менее, такой подход мало содействует решению основной проблемы описания сложных процессов и объектов, с которой сталкиваются в современной науке и практике, — проблемы синтеза неоднородных качеств. Сегодня во многом открытыми остаются вопросы: насколько широко может быть распространен принцип изоморфизма законов в исследовании систем? Возможна ли в рамках ОТС информационная модель, устанавливающая соответствие законов любых качественно отличающихся систем?

У Берталанфи нет убедительного ответа на эти вопросы. Он считает допустимым опираться на концепт универсальной системы. Но в качестве основы обобщений в собственных системных разработках применяет достаточно ограниченные и специализированные классы системных моделей — модель открытой системы, модель эквифинальной системы.

В настоящее время большинство авторов склоняются к выводу, что не существует общесистемных предметных моделей, применимых к сколь угодно различающимся в качественном отношении системам. Это не отрицает правомерности построения обобщенных концепций теории систем, обобщенных в отношении определенных классов задач, теорий, принципов описания тех или иных типов систем.

Можно утверждать также, что логико-методологическая значимость обобщенных системных моделей заключается не в открытии способов универсального теоретического изображения объектов знания, но в уточнении особенностей конструирования абстрактных объектов, позволяющих формулировать типичные классы законов, используемых в научном познании. Как подчеркивал Л. Берталанфи, эта задача решается современной наукой на основе применения принципа системности, который отражает методологические требования изучения сложных организаций.

Их отличительным признаком Берталанфи считал наличие сильных взаимодействий между компонентами, а также нелинейность связей. Исходя из этого, он определял процедуру системного исследования как противоположную аналитической процедуре классической науки и подчеркивал, что системный подход применяется тогда, когда невозможно реально, логически или математически «извлекать» части из целого, а затем их «собирать», восстанавливая целостную картину.

Представление об организованной сложности, на которое опирается Л. Берталанфи при построении общей теории систем, вносит элементы диалектического мышления в современное научное познание. Однако эту роль ОТС не следует переоценивать. Берталанфи противопоставлял, например, возможности логико-математического определения понятий, охватывающих проблемы сложности и целостности, философскому истолкованию этих понятий. Он считал главным результатом овладения сложностью выработку математических моделей для понятий «прогрессивной сегрегации», «механизации», «централизации», «индивидуализации», «иерархического порядка», «финальности» и «эквифинальности» и др.

Здесь Л. Берталанфи оказывается в плену методологической иллюзии, отдавая приоритет в прогрессе научного знания его математической форме. Тогда как математизация — это только один из аспектов преобразования содержания научного знания. В сети системных понятий представлена новая исследовательская стратегия, новые детерминистские установки научного познания. В известной мере Берталанфи учитывает это обстоятельство. Но он сводит предмет ОТС к изучению законов организации, координации целого и частей, исключая из сферы ее исследования законы уровневой детерминации, законы самоорганизации и ряд других. Поэтому ОТС Берталанфи имеет ограниченное методологическое значение и не вправе претендовать на статус общенаучной теории.

 

 

Вернуться к содержанию

 

 

 

 

3.8.2.Теоретическая концепция У. Росс Эшби

Важным источником системных методов и понятий является кибернетика. Многие исследователи отмечают существенное совпадение проблематики, методов, целей и задач в кибернетике и теории систем. Это совпадение отражается в определениях предмета кибернетики, который характеризуется с помощью понятия системы и различных модификаций данного понятия.

В целом ряде своих характеристик кибернетика ориентирована на исследование объектов как сложных систем. Ее концептуальный аппарат позволяет изучать динамику сложно организованных систем. Ее интересуют также закономерности оптимального управления сложными динамическими системами.

Путь развития кибернетики показывает, что она не равносильна частной науке естественного цикла. Развитие кибернетики породило целое научное направление, опирающееся на свод общих идей и представлений. Ее понятия имеют обобщенный характер по отношению ко многим частным научным дисциплинам, несут определенную методологическую нагрузку.

Междисциплинарная роль кибернетики обеспечивается прежде всего применением метода информационного моделирования, который позволяет переносить результаты исследования систем одного субстрата на все информационно-эквивалентные им системы вообще. Отвлекаясь от изучения субстратных свойств объектов, кибернетика выявляет их общность в плане информационных свойств и свойств управления. Например, представление об информационных структурах активно применяется при изучении деятельности человеческого мозга и для моделирования механизмов психических процессов. В этой области используется язык формального описания информационных задач, решаемых мозгом, язык теории информационных процессов.

Теория информационных процессов отвлекается от непосредственной связи между процессами переработки информации мозгом и работой его как физиологической системы. Предполагается, что информационные и физиологические структуры мозга непосредственно не совпадают, а также, что переработка информации головным мозгом осуществляется с помощью алгоритмов, которые объединяются в своей работе в сложные эвристические программы. Последние соединяют между собой элементарные информационные процессы.

Хотя междисциплинарный статус кибернетики широко признается, тем не менее, системологи указывают обычно на специфичность объекта и методов кибернетики, связанную с ее ориентацией на исследование процессов управления.

Попытка трактовать кибернетику в качестве общей теории систем сделана У. Росс Эшби. В его работах возникновение общей теории систем рассматривается как отражение поворота науки к изучению сложностей. Методологическую специфику указанного поворота Эшби видит в преодолении аналитических тенденций прошлого, в установке на изучение целого как такового — без расчленения его на простые составляющие, на отдельные функции, стороны, свойства и т. д. [28].

Решение задачи по формированию ОТС Эшби начинал с определения универсального класса систем, используя для этого теоретическое представление о системе как совокупности любых переменных. Далее он указывал на возможности выбора из этого класса так называемых «естественных систем». Основаниями для выбора служат особые свойства систем, представляющие интерес для тех или других направлений науки. Эшби остановил свой выбор на информационно непроницаемых системах, которые, по его мнению, прежде всего, изучаются в биологии. Теоретики систем, считал Эшби, должны уделить этому классу систем повышенное внимание, поскольку методы их исследования могут иметь универсальное значение.

В концепции Эшби исходным является понятие «механизма», которое отражает не обычные механические вещи, но функциональный аспект вещей, способы их поведения. При этом учитывается воспроизводимый, регулярный, детерминированный характер поведения систем. Для описания такого поведения Эшби использовал аппарат дискретных преобразований. Такой аппарат позволяет рассматривать поведения дискретной машины в пространстве абстрактных возможностей. Опора на этот аппарат создает предпосылки для применения в кибернетике теории информации.

Эшби подчеркивал, что для описания системы, которая определяется в качестве машины, требуется найти совокупность переменных, образующих замкнутое однозначное преобразование, Во многих случаях для этого приходится обращаться к обобщенной форме выражения переменных — векторам. Имеется обширный класс систем, для которых однозначное преобразование и, соответственно, детерминированное описание поведения осуществимо при учете вероятностей тех или других событий.

Здесь следует указать на нечеткость методологической позиции Эшби в решении вопроса о способах определения системы. Он считает, что допустим любой набор переменных, способных описать ту или иную систему. Выбор переменных он целиком связывает с произволом исследователя. Между тем задача описания системы не исчерпывается заданием переменных. Главное заключается в нахождении способов отражения детерминированного поведения изучаемой системы. Общенаучный смысл понятия системы неразделим с представлениями о детерминированной природе системных объектов. Но, исходя из этого, мы обязаны учитывать, что тип детерминации так или иначе должен быть отражен в способах описания системы. Будучи серьезным ученым, Эшби в своей концепции вынужден руководствоваться этим методологическим требованием.

Эшби сделал важный в методологическом плане вывод, что поведение машины становится вполне определенным при уточнении как поведения ее частей, так и всех деталей их соединений. С этих позиций он рассматривал управляемое поведение системы, раскрыл значение понятий гомеостат, обратная связь и др. Согласно Эшби, принципы, применяемые для изучения дискретных машин, отвечают задачам овладения организованной простотой, с которой сталкиваются в так называемых «приводимых системах», состоящих из ряда функционально независимых частей.

Однако для обширного класса систем существенное значение приобретает взаимодействие между переменными. Это случай, когда каждый шаг в изменении одной переменной сопутствует изменению другой. Здесь познание сталкивается с системами организованной сложности. Они не поддаются детальному описанию, и в их отношении требуются новые понятия и методы познания.

В разработке таких методов Эшби шел от гносеологической характеристики сложности. Он описывал познавательную ситуацию при столкновении со сложной системой, вводя представление о неопределенности ее поведения для данного наблюдателя [29]. Одновременно он отмечал, что в описании сложных систем приходится мириться с известной неполнотой. Этот факт наводит на мысль об использовании в системных исследованиях статистического аппарата, который приспособлен для выводов о целом по его части.

Формулировку наиболее общего принципа изучения сложных систем Эшби связывал с реализацией в кибернетике идеи «черного ящика». Он указывал, что применение метода «черного ящика» предполагает построение моделей, с которыми можно экспериментировать. С другой стороны, подчеркивал гомоморфный характер моделирования в рамках метода «черного ящика».

Согласно взглядам Эшби, экспериментатор и «черный ящик» вместе составляют систему с обратной связью, т. е. имеют входы и выходы. Манипулируя по своему желанию с входами и наблюдая выходы, экспериментатор стремится сделать вывод о том, что может содержаться внутри ящика. Здесь возникает задача о кодировании и перекодировании информации.

Эшби считал, что протокол, который фиксирует данные, получаемые на выходе, правомерно рассматривать как информационное сообщение о природе «черного ящика». Он полагал, что обработка протокола позволяет извлечь ряд сведений о свойствах «черного ящика». Например, установить: информационную непроницаемость, машиноподобность, функциональные связи, число параметров, однозначно определяющих поведение системы.

С методологической точки зрения применение метода «черного ящика» оправдано в изучении поведения сложных систем постольку, поскольку он обеспечивает выполнение требований об информационном подобии «ящика» и реального сложного механизма. При достаточном разветвлении входов и выходов изучаемая модель способна реализовать количество разнообразия такого порядка, который соответствует количеству разнообразия сложной системы.

Другое требование состоит в том, чтобы перекодирование протокола описывало поведение системы в форме канонического представления. Эшби отмечал, что такое представление задает механизм с точностью до изоморфизма.

Наконец, третье требование касается допустимых пределов упрощения систем, осуществляемого с помощью «черного ящика». Эшби говорил, что для этого случая требуется применение точных методов реализации гомоморфизма. Формирование таких методов он связывал с использованием алгебраической теории множеств в описании отображений и отношений.

Эшби учитывал также, что гомоморфное описание сложной системы только тогда достигает цели, способствует раскрытию механизма системы, когда оно сохраняет машиноподобность в изменениях состояний системы, т. е. выражает детерминированность ее поведения.

По существу, Эшби двигался по пути обобщения методологических приемов эмпирических наук, которые выделяют предмет своего изучения, опираясь на принцип детерминизма. В простых ситуациях системное определение предмета ограничивалось указанием на однозначную причинно-следственную зависимость как основание изменений отдельного объекта. Эшби предложил более общий подход, позволяющий учитывать сложные связи и взаимодействия объектов. Основной теоретической формой системного определения предмета познания он считал статистическую структуру. Она изоморфно воспроизводит статистическую избыточность протокола описания «черного ящика» и служит выявлению устойчивости в поведении сложной системы.

Теория систем, которую разрабатывал Эшби, может быть оценена как форма общенаучной рефлексии в отношении применения принципа детерминизма к эмпирическим исследованиям. Здесь этот принцип характеризуется с учетом изменений в современной научной картине мира. Он включает представления как об однозначных, так и статистических закономерностях. Системные определения предмета науки строятся в этой теории, исходя из единства указанных групп закономерностей.

Однако концепция Эшби накладывает ряд существенных ограничений на применение принципа детерминизма. Главное из них состоит в том, что способы детерминистического описания систем берутся в отвлечении от их субстратных характеристик, от содержания. Эшби делал упор на исследовании функциональной структуры. Такая абстракция является плодотворной для решения; определенного круга задач и проблем, позволяет обобщить принципы функционального исследования систем. Вместе с тем за пределами этой теории остаются вопросы внутренней динамики сложных систем, не рассматриваются внутренние факторы самоорганизации, развитие механизмов надстраивания новых функциональных элементов систем и другие существенные аспекты системного исследования. Но в таком случае кибернетика как общая теория систем не претендует на универсальное значение. Она оставляет место для разработки других специализированных системных теорий.

 

 

Вернуться к содержанию

 

 

 

 

3.8.3. Параметрическая теория систем

Оригинальный вариант теории систем разработан в трудах А. И. Уемова и его единомышленников [30]. Методологическое своеобразие этой теории заключается в том, что в качестве эмпирического базиса здесь рассматриваются не закономерности конкретных систем, а данные, которые описывают целые классы систем. Форма, в которой представлены такие данные, выражается совокупностью реляционных и атрибутивных параметров. В названной концепции подчеркивается, что системные параметры — это свойства новых объектов исследования, называемых системами. Набор системных параметров позволяет выделить системы и классифицировать их.

Такие параметры допускают ряд значений и могут иметь эмпирическую интерпретацию, служить для получения адекватной информации относительно любой системы. К их числу относятся гомогенность, элементарность, минимальность, незавершенность, изменчивость и другие характеристики систем.

Основное внимание в этой концепции уделяется изучению соотношений системных параметров и определению системных закономерностей. В рамках параметрического подхода установлено более 30 эмпирических системных закономерностей. Вместе с тем ставится задача их определения и выведения на их основе теоретических представлений.

Обобщающая функция параметрической теории систем реализуется на основе двух положений. Первое из них фиксирует понимание нового предмета современного научного знания. Его определение связано с изучением отношений, взятых в отвлечении от субстрата, являющегося носителем данных отношений. Второе положение характеризуется признанием особой роли абстрактного моделирования в исследовании системообразующих отношений. А. И. Уемов подчеркивал, что главное в системном подходе — это анализ взаимосвязей в системе. Верность такого понимания обнаруживается применительно и к материальным, и к идеальным системам. Одновременно он указывал, что собственно системные исследования имеют своим предметом отношения, что предмет системного познания — это отношения конкретных вещей, которые и образуют систему.

Очевидно, что здесь точка зрения А. И. Уемова имеет своим истоком известную мысль Ф. Энгельса о совокупной связи тел как системе.

Однако, отстаивая необходимость применения новых принципов моделирования в системных исследованиях, А. И. Уемов предложил своеобразное определение системы, которое не совпадает с классической трактовкой. Он связывал это определение с выделением тернарного отношения. По его мнению, здесь речь идет об отношении второго порядка, которое устанавливается между вещами, свойствами и отношениями.

Стремясь к логико-методологической строгости в исследовании моделирующих функций ОТС, А. И. Уемов обратился к разработке формализованного языка тернарного описания. В качестве элементарной ячейки формального аппарата ОТС он принял соотношение категорий «определенность» и «неопределенность», полагая, что применение данной пары категорий позволяет встать на более общую точку зрения, чем в случае применения категории «множество» в качестве базовой для теории систем.

Используя ряд специальных операций, А. И. Уемов дал формальные определения фундаментальным для его теории систем категориям «вещь», «свойство» и «отношение». При этом указывалось, что его определение вещи не отличается от определения, принятого в современной математической логике. Зато способ формализации понятия «отношение» принимается иной, нежели в теоретико-множественной концепции современной логики, в которой отношение берется как многоместный предикат, связанный с некоторой логической функцией. А. И. Уемов характеризовал отношение как функцию, в которую входит некоторая вещь, а значение представляет собой вещь, отличную от первой. Аналогично определяется и категория свойства, которая характеризуется как функция, устанавливающая соотношение между одними и теми же вещами.

В концепции Уемова А. И. логическая форма понятия «система» характеризуется как обязательная схема, инвариант известных определений этого понятия. Содержательное наполнение такой формы связывается с переходом к эмпирическим данным классам свойств и отношений, изученных и известных исследователю.

Вместе с тем применение схемы или модели системы рассматривается здесь в контексте распознавательной деятельности. С этой целью А. И. Уемов вводит представление о концепте системы, с которым должно соотноситься полное определение реального объекта в качестве системы. Выбор концепта, по словам А. И. Уемова, предваряет ход исследования.

Параметрическая теория систем руководствуется представлением об относительности системного описания объекта. Таковой может быть или не быть системой в зависимости от выбора системообразующего свойства или системообразующего отношения.

Положение, что определение объекта в качестве системы зависит от выбора концепта t, иногда служит основанием для обвинения рассматриваемой теории в субъективизме. А. И. Уемов это обвинение отклоняет. Он подчеркивал, что системы должны рассматриваться не как творения разума, а как нечто существующее в объективной действительности. По А. И. Уемову, системы объективны в том смысле, в каком объективны отношения.

Оценивая позицию Уемова по данному вопросу, следует отметить, что он вводит в научный оборот две формы понятия системы. В одном случае он характеризует понятие системы как элемент современной общенаучной картины мира, рассматривает его на уровне мировоззренческих принципов. Именно в этом плане надо понимать указание на базисную роль в системном подходе принципа взаимосвязи явлений.

Во втором случае подчеркивается теоретико-методологическое содержание принципа системности. В соответствии с этим А. И. Уемов рассматривал систему как аналог объектов, как модель, образец, эталон, с которым согласуется процесс системного исследования. Отсюда проистекает специфика постановки вопроса о системах. Он звучит не в традиционной форме: что есть система? Здесь основной является другая формулировка: что следует определить в этом объекте в качестве системы?

Правомерность подобной формулировки доказана сегодня для целого ряда областей знания. Она является достаточно плодотворной и для ОТС. Но приняв ее, мы с необходимостью включаем в определение системы элемент выбора, учитываем активную позицию субъекта.

Выше говорилось, что А. И. Уемов определял систему через установление отношения второго порядка — между вещами, свойствами и отношениями. Используя терминологию А. И. Уемова, это отношение можно отождествить по форме с операцией импликации и выразить таким образом: если налицо системообразующее отношение (свойство), то тем самым имеем свойство (отношение), реализующее его на каких-то объектах.

По существу, здесь учитывается взаимная корреляция, детерминация системообразующих свойств и отношений. Однако для формальной теории систем нет нужды уточнять характер взаимной корреляции системообразующих свойств и отношений. Эта корреляция фиксируется как абстрактный объект. В силу чего возникают основания утверждать, что любая группа объектов может представлять собой систему. А. И. Уемов приводил ряд экстравагантных примеров подобных утверждений. Они не противоречат формулам того языка, на котором строится рассматриваемая теория систем, но не могут быть перенесены в состав естественнонаучной картины мира.

Опыт научного познания выступает против случайного, произвольного соединения объектов в систему. Это обязывает общенаучную теорию систем включать разработку критериев системности по существенным основаниям. Но такое требование предполагает выход за пределы формальной конструкции. Речь идет здесь о необходимости исследования философско-категориального значения понятия системы, а также о применении этой категории к оценке предметной области современного научного познания. А. И. Уемов характеризовал происходящие в этой области изменения со стороны новых принципов моделирования и классификации объектов науки. И в этом состоит реальный вклад предлагаемой им концепции в науку. Но системное моделирование есть форма, тогда как содержание новой методологии раскрывается через изучение различных аспектов сложной системной детерминации, через исследование новых типов объективных закономерностей.

В рамках содержательного подхода выявляется многоаспектность системных объектов, качественные градации системности, наличие относительно самостоятельных уровней в сложных системах, взаимопроникновение этих уровней, преобразования способов функционирования систем и т. п. Для отражения сложной системной детерминации недостаточно категорий вещь, свойство, отношение. Здесь важно привлечь широкий круг категорий диалектического детерминизма, которые могут служить надежным методологическим основанием разработки формального аппарата системной теории.

 

 

Вернуться к содержанию

 

 

 

Вернуться к началу страницы

 

 

 

 

 



[1] В. Г. Лёвин. Принципы системного моделирования. Методологический анализ. – Самара.:Самарский гос. техн. ун-т, 2004. 60 с.

[2] Эйнштейн Альберт. Большая Советская Энциклопедия: [в 30 т.] / под ред. гл. ред.А. М. Прохоров — 3-е изд. —М.:Энциклопедия, 1978. — Т. 29 : Чаган — Экс-ле-Бен. — С. 578—579.

[3] Ландау Л. Д., Лившиц Е. М. Квантовая механика (нерелятивистская теория). — Издание 6-е, исправленное. — М.: Физматлит, 2004. — 800 с. — («Теоретическая физика», том III).

[4] Базаров И. П. Термодинамика. — СПб.: Лань, 2010. — С. 29– 30. — 377 с.

[5] См.: Второе начало термодинамики.: М.-Л. Гостехтеориздат, 1934. – С. 71-158.

[6] Гельфер Я. М. История и методология термодинамики и статистической физики. – М.: Высшая школа, 1981. С. 295.

[7] Boltzmann L. Wissenschaftliche Abhandlungen. Leipzig. 1909. Bd. 2. S. 128.

[8] Пригожин И., Стенгерс И. Порядок из хаоса. – М.:Прогресс, 1986. С. 190.

[9] Азимов А. Краткая история химии.М.: Изд-во ЁЁ Медиа, 1983. С. 116

[10] Эйген М., Винклер Р. Игра жизни. – М.: Наука, 1979. С. 21

[11] Эйген М., Винклер Р. Игра жизни. – М.: Наука, 1979. С. 23.

[12] Эйген М., Шустер П. Гиперцикл. Принципы самоорганизации макромолекул. – М.: Мир, 1982. 270 с.

[13] Новиков Д. А. Кибернетика: Навигатор. История кибернетики, современное состояние, перспективы развития.-М.: Ленанд, 2016.-160 с.

[14] См., напр.: Потапов А. С. Искусственный интеллект и универсальное мышление / А. С. Потапов. — СПб.: Политехника, 2012. — 711 с.

[15] Джордж Ф. Основы кибернетики. – М.:Радио и связь,1984. С. 39.

[16] Винер Н. Кибернетика или управление и связь в животном и машине. – М.: Наука, 1958. С. 20, 21.

[17] См. Самоорганизация: кооперативные процессы в природе и в обществе. Ч. 1. –М.: 1990. С. 3.

[18] Хакен Г. Информация и самоорганизация. Макроскопический подход к сложным системам. – М.:Мир, 1991. С. 50.

[19] Jantsch E. The self-organizing Universe. Oxford etc: Pergaman press. 1980. P. 33.

[20] Эйген М., Винклер Р. Игра жизни. –М.: Наука, 1979. С. 13.

[21] Пригожин И., Стенгерс И. Порядок из хаоса. – М.: Прогресс, 1986. С. 56, 198.

[22] Этот вывод вытекает из идей И. Пригожина.

[23] Хакен Г. Информация и самоорганизация. Макроскопический подход к сложным системам. – М.: Мир, 1991. С. 49.

[24] Месарович М. Основания общей теории систем//Общая теория систем. – М.: Мир, 1966. С.19.

[25] Садовский В. Н. Общая теория систем как метатеория//Вопросы философии.1972. №4. С. 83.

[26] General systems. Vol. 1, 1956. P. 7.

[27] Human biology. 23. № 4. 1951. P. 305.

[28] Эшби У. Росс. Общая теория систем как новая научная дисциплина// Исследования по общей теории систем. – М.: Прогресс, 1969. С. 125.

[29] Эшби У. Р. Введение в кибернетику. – М.: Изд-во иностранной литературы, 1959. С.94.

[30] Уёмов А. И. Системный подход и общая теория систем. – М.: Мысль, 1978. – 272 с.